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Abstract: Cone-beam computed tomography (CBCT) is an emerging medical imaging modality used for various clinical 

applications. However, radiation dose to patients is a major limiting factor for its utility in some applications such as daily 

patient setup and future adaptive therapy in radiotherapy. In this article, we summarize recent development for dose re-

duction in CBCT. In particular, we discuss several noise reduction strategies for low-dose CBCT with a low mAs proto-

col. 
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I. INTRODUCTION 

With the development of large area flat-panel detectors, 
cone-beam computed tomography (CBCT) has become an 
emerging medical imaging modality and been widely used 
for various clinical applications such as for breast imaging 
and image-guided radiation therapy (IGRT) [1-28]. Com-
pared with conventional digital mammography, CBCT breast 
imaging provides volumetric information which potentially 
can improve lesion detection accuracy with increased radia-
tion dose. In radiation therapy, integration of the CBCT with 
a linear accelerator makes it possible to acquire a high-
resolution volumetric image of a patient at a treatment posi-
tion. There is growing interest in using on-board CBCT for a 
patient treatment position setup and dose reconstruction in 
radiotherapy [8, 29-31]. The repeated use of CBCT during a 
course of radiotherapy treatment has raised concerns of extra 
radiation dose delivered to patients [32-35]. For example, it 
has been reported [34] that the dose delivered from Varian’s 
CBCT system with current clinical protocols for pelvic area 
is more than 3 cGy for central tissue, about 5 cGy for most 
of the peripheral tissues and 11 cGy to femoral head. If 
CBCT is used daily for patient setup, the total CBCT imag-
ing dose delivered to patient could be extremely high in a 
course of intensity-modulated radiation therapy (IMRT) 
treatment. The extra radiation exposure to normal tissue dur-
ing kV-CBCT will significantly increase the probability of 
stochastic risk of inducing cancer and genetic defects. The 
CBCT dose needs to be minimized to fully realize its advan-
tages in these clinical applications. 

CBCT imaging dose is affected by many factors includ-
ing tube potential (kVp), tube current and exposure time  
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(mAs), beam quality, beam collimation, etc. Dose reduction 
for CBCT can be achieved via X-ray beam collima-
tion/filtration or using a low mAs protocol. In this article, we 
summarize recent development of dose reduction techniques 
for CBCT including different design of beam collimators, 
iterative image reconstruction algorithms for CBCT based on 
undersampled projection views, and noise reduction tech-
niques for low-dose CBCT with a low mAs protocol. 

II. COLLIMATOR-BASED METHODS 

CBCT imaging dose can be reduced by using X-ray fil-
ters or collimators. In commercial scanners, two types of 
filters, i.e., flat filters and bowtie filters, are usually em-
ployed to reduce patient dose. The flat filters, typically made 
of aluminum or copper, are used to attenuate the X-ray spec-
trum uniformly across the entire field of view (FOV) to re-
move low-energy X-rays. The bowtie filters are employed to 
modify the intensity of the X-ray beam inside the FOV. The 
patient cross section is typically oval-shaped and the bowtie 
filter is designed to compensate for the variable path length 
of X-ray beam through the patient. 

Several different collimators have been proposed to fur-
ther reduce radiation dose in CBCT. For example, Chityala 
et al. [36] proposed a concept of region-of-interest (ROI) CT 
where only ROI is irradiated with high-dose X-rays while 
outside of ROI is irradiated at a lower dose. Moor et al. [37] 
added a zonal filter to the CBCT X-ray tube of the Elekta 
Synergy linear accelerator to produce an un-attenuated beam 
for a central “target zone” and a partially attenuated beam for 
an outer “set-up zone”. By using such collimator, doses 
along the axis of rotation were reduced by up to 50% in both 
target and set-up zones. Contrast-to-noise ratio (CNR) in-
creased by up to 15% in zonally filtered CBCT images com-
pared to full-field images due to the reduced scatter signal 
from attenuated beam. Chen et al. [2] and Lai et al. [38] pro-
posed to use a volume-of-interest (VOI) filter for breast 
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CBCT. In this method, a filtering mask is inserted between 
the x-ray source and the breast during image acquisition and 
the mask has an opening to allow full x-ray exposure to be 
delivered to a preselected VOI and a lower exposure to the 
region outside the VOI. Cho et al. [39] proposed a ROI im-
age reconstruction with intensity weighting in circular 
CBCT. A non-uniform filter is placed in the X-ray beam to 
create regions of two different beam intensities and the CT 
image is reconstructed by the region of interest backprojec-
tion-filtration (BFP) algorithm [40-42]. In this manner, re-
gions outside the target area can be given a reduced dose but 
still visualized with a lower CNR. 

Zhu et al. [43] proposed an patient setup protocol for ra-
diotherapy based on partially blocked CBCT. In this method, 
a sheet of lead strips is inserted between the X-ray source 
and the scanned patient. From the incomplete projection 
data, only several axial slices are reconstructed and used in 
the image registration for patient set-up. Since the radiation 
is partially blocked, the dose delivered onto the patient is 
reduced by a factor of more than 6, with an additional benefit 
of reduced scatter signals. As compared to registration using 
the regular CBCT, the registration difference using the par-
tially blocked CBCT is less than 1 mm in translation and less 
than 0.2 degrees in rotation. The same concept has also been 
used for CBCT scatter correction [44]. 

III. ITERATIVE IMAGE RECONSTRUCTION FOR 
CBCT FROM UNDERSAMPLED PROJECTION 

VIEWS 

Dose reduction for CBCT can also be achieved to acquire 
data with a reduced number of projection views. Severe arti-
facts are presented in CT images if they are constructed by 
analytical FBP-type of algorithms. Recently, several iterative 
image construction algorithms [45-47] based on the com-
pressed sensing theorem [48] have been under investigation 
to improve CT image quality from undersampled projection 
views. Chen et al. [45] proposed a prior image constrained 
compressed sensing (PICCS) technique to enhance image 
quality of dynamic CT from highly undersampled projection 
data sets. Sidky et al. [47] proposed a constraint total-
variation minimization method for circular CBCT image 
reconstruction from limited projection data. Excellent results 
have been obtained in those strategies. 

IV.  NOISE REDUCTION ALGORITHMS FOR 
LOW MAS CBCT 

A cost-effective approach to reduce the radiation dose 
delivered to patients during the CBCT procedure is to ac-
quire CT projection data with a lower mAs protocol. The use 
of automatic exposure control (AEC) for helical CT has been 
offered by CT manufactures to manage patient dose, where 
the tube current is automatically adjusted both angularly 
around patient and along the z-axis [49-52]. On the other 
hand, using overall low mAs protocol can further reduce 
imaging dose significantly. Compared with the collimator-
based approaches mentioned above, low mAs CBCT offers 
several advantages including: 1) no modification of current 
component of CBCT hardware; 2) higher duty-cycle of X-
ray tube; and 3) longer X-ray tube life. However, a downside 
of low mAs protocol is that the quality of the projection data 
and the reconstructed CBCT image will be degraded dra-

matically due to excessive quantum noise during intensity 
measurements. To recover the image quality of resultant 
CBCT, many strategies have been proposed to reduce noise 
in low mAs CBCT. In this section we will summarize the 
recent efforts devoted to improve image quality of noisy 
low-dose CT. In particular, we will describe the strategy of 
statistics-based sinogram smoothing/restoration followed by 
analytical image reconstruction in details because it gener-
ates very promising results and maximizes computational 
efficiency. 

IV.A. Low-Pass Filter During Image Reconstruction 

Noise usually appears as high-frequency component in 
frequency domain. Conventionally, noise in CT is sup-
pressed by using a low-pass filter to attenuate the high-
frequency component of the projection data during image 
reconstruction. Meanwhile, high frequency component also 
contains information about the tissue edges in the image. A 
simple low-pass filter cannot differentiate edge information 
from noise. Thus, noise reduction using a low-pass filter will 
result in the loss of edges, which is not desirable for low-
dose CT imaging. 

IV.B. Local Characteristics-Based Edge-Preserving Filter 

In an effort to preserve edge information during noise 
suppression, several edge-preserving filters [53-57] have 
been proposed to reduce noise in either CT projections or 
reconstructed CT images. This type of filters is usually based 
on local characteristics of the projection data elements or 
image voxels. Demirkaya [57] used the classical anisotropic 
diffusion filter to suppress noise in projection data of fan-
beam CT. Xia et al. [56] applied partial diffusion equation 
(PDE) based denoising technique for breast CBCT at differ-
ent steps along the reconstruction process, and found that 
denoising performs better when applied to the projection 
data than the reconstructed image. Hsieh [53] developed an 
adaptive trimmed mean filter to suppress streak artifacts re-
sulting from excessive X-ray photon noise. In this method, a 
one-dimensional (1D) filter is designed such that its parame-
ters are

 
dynamically adjusted to adapt to the local noise char-

acteristics of raw projection data. Similarly, Kachelriess et 
al. [54] proposed a generalized multi-dimensional adaptive 
filter that applies non-linear filtering in the detector row, 
view and the z-direction. Zhong et al. [55] presented a wave-
let-based algorithm to suppress noise in the ramp-filtered 
projection data for breast CBCT images and dose can be 
reduced by up to 60% while maintaining clinically accepted 
image quality. Borsdorf et al. [58] reported a wavelet do-
main noise reduction algorithm in which the threshold for 
wavelet coefficient is determined through correlation analy-
sis of two spatially identical CT images reconstructed from 
two sets of projection data. 

IV.C. Statistics-Based Sinogram Smoothing/Restoration 

More recently, statistics-based sinogram smooth-
ing/restoration algorithms [59-63] have shown advantages in 
noise reduction and edge preservation for low-dose CT. This 
type of adaptive strategy tends to estimate the ideal or noise-
free line integrals from the noisy measurements through 
maximizing a statistical (e.g., penalized likelihood) objective 
function. CT images are then reconstructed by an analytical 
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reconstruction algorithm. The idea of this strategy is to retain 
the benefits of statistical modeling with the objective func-
tions while avoiding the time consuming re-projection and 
back-projection cycle in the fully iterative statistical image 
reconstruction algorithms. The statistical objective function 
can be formulated according to statistical properties of either 
measured raw data or log-transformed projection/sinogram 
data. In the following sections, we will summarize these two 
different approaches for the estimation of ideal line integrals. 

IV.C.1 Based on Statistics of Measured Raw Data 

La Riviere et al. [61, 62, 64] proposed a strategy to esti-
mate “ideal” line integrals based on the statistical properties 
of the measured raw data. Without considering polychro-
matic spectrum of X-ray photons, the measured signal Ii  

at 
detector bin i can be modeled as [62]: 

Ii = Poisson(I0 exp( li ))+Normal(0, e
2 )                            (1) 

where li  is the line integral along projection ray i, I0  is the 

incident X-ray intensity and e
2  is the variance of back-

ground electronic noise. When energy spectrum of X-ray 

photons is taken into account, the energy-weighted combina-

tion of Poisson random variable can be described by com-

pound Poisson statistics [65, 66]. Because the sum of a com-

pound Poisson distribution and a Gaussian distribution give 

rise to an intractable distribution, La Riviere [61] proposed 

to use an approximate statistical distribution of the measured 

raw data by approximating the compound Poisson distribu-

tion by a simple Poisson distribution and redefining new 

adjusted measurement. Then the ideal line integrals were 

estimated by maximizing a penalized Poisson-likelihood 

objective function [61, 64]. Fig. (1) shows the simulation 

results of the algorithm. The proposed algorithm outperforms 

the conventional low-pass filters as demonstrated by the 

noise-resolution curves in Fig. (2).  

IV.C.2. Based on Statistics of Log-Transformed Projection 
Data 

In the meantime, the noise model of the sinogram data af-
ter logarithm transform (i.e., line integrals) has been under 
investigation [60, 67], Wang et al. [67] performed a system-
atic experimental study on noise properties of low-dose CT 
projection data in the Radon space. An anthropomorphic 
torso phantom was scanned repeatedly by a Siemens CT 
scanner at five different mAs levels from 100 down to 17. 
The repeated measurements at each mAs level were used to 
test the normality of the repeatedly measured samples for 
each data channel using the Shapiro-Wilk test. The Shapiro-
Wilk test gives the p-value for each of the repeated meas-
urements at each channel. A smaller p-value indicates that 
the projection data at that channel is less likely to follow a 
normal distribution. The rejection percentage (those channels 
whose p-values are less than 0.05 divided by the total num-
ber of channels in each sinogram) for each mAs level is 
shown in Fig. (3). It can be observed that the rejection per-
centages increased from approximately 6% at 100 mAs level 
up to 9% at 17 mAs level for all data channels. This analysis 
indicates that even though the noise in low-dose projection 
data after logarithm transform cannot be approximated by a 
normal distribution, it is very close. Thus, a good candidate 
objective/cost function for calibrated low-dose sinogram data 
would be the penalized weighted least-squares (PWLS) crite-
rion [63]. Mathematically, the PWLS cost function in si-
nogram domain can be written as: 

(l) =
1

2
(ŷ l̂ )T 1(ŷ l̂ )+ R(l) ,                               (2) 

where the first term is a weighted least-squares (WLS) crite-

rion, ŷ  is the vector of the measured sinogram data, and l̂  

is the vector of ideal sinogram data to be estimated. Symbol 

T denotes the transpose operator. The matrix  is a diagonal 

 

Fig. (1). Results of applying the sinogram restoration approach [64] to data corrupted with beam hardening alone (labeled BH), to data cor-

rupted with off-focal radiation alone (labeled OF), and to data corrupted with both of these effects plus compound Poisson and electronic 

noise (labeled BH, OF, Noise). The left two columns involve reconstruction without correction for these effects and the right two columns 

after correction by the proposed penalized likelihood method with smoothing parameter 1.0. The window level is 0 HU and the width is 150 

HU for all figures. (Figure reprinted with permission from La Riviere P.J et al, Penalized-likelihood sinogram restoration for computed to-

mography, IEEE Transactions on Medical Imaging 25, 1022-1036:2006. ©  2006 IEEE). 
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matrix and its ith element is the variance of sinogram data at 

detector bin i. The second term in equation (2) is a smooth-

ness penalty or a prior constraint, where  is the smoothing 

parameter which controls the influence of the penalty. It is 

noted that PWLS cost function has been used in several 

medical imaging applications [68-70]. The key differentia-

tion among these applications is the determination of the 

matrix  and the penalty term R. 

The element of the diagonal matrix  is the variance of 
the corresponding sinogram datum and it determines the con-
tribution of each sinogram datum to the cost function. Accu-
rate estimation of the variance of each sinogram datum de-
termines the performance of the PWLS criterion. From ex-
perimental studies [60, 67], it was found that variance of the 
sinogram datum can be estimated accurately by: 

 i
2
= exp(%li ) / Ni0 ,                                                       (3) 

where Ni0  is the incident photon number at detector bin i. 

To validate the above mean-variance relationship, the sample 

mean 
 
%li  and variance i

2  of each channel were calculated 

first from repeated scans, and then a comparison study was 

performed on the experimental sample variances calculated 

from the repeated scans with the theoretical variances pre-

dicted by equation (3). As shown in Fig. (4), good consis-

tency between the variances calculated from repeated scans 

 

 
 

Fig. (2). Resolution-noise tradeoffs for exposures 2.5 105 and 2.5 106 at the center and right circular inserts in the ellipse phantom for the 

monochromatic line integral estimation approach (labeled “Mono”), the polychromatic line integral estimation approach (labeled “Poly”),the 

transmitted intensity estimation approach (labeled “Tran”), and conventional deconvolution followed by Hanning filtration (labeled “Han”). 

(Figure reprinted with permission from La Riviere P.J et al, Penalized-likelihood sinogram restoration for computed tomography, IEEE 
Transactions on Medical Imaging 25, 1022-1036:2006. ©  2006 IEEE). 

 

Fig. (3). Rejection percentage of the Shapiro-Wilk normality test 

for sinogram data at different mAs levels. (Figure reprinted with 

permission from Wang J. et al, 2008. An experimental study on the 

noise properties of x-ray CT sinogram data in Radon space, Physics 

in Medicine and Biology 53, 3327-3341:2008). 
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and from equation (3) is observed for both 17 and 100 mAs 

levels at an arbitrarily selected view. 

According to equation (3), a sinogram datum with a 
larger mean value will have a larger variance and therefore 
less contribution to the cost function since the weight of that 
measured datum is 1 i

2 , as defined in (2). This can be un-
derstood by the following observation. A larger sinogram 
datum value li  at detector bin i indicates less X-ray photons 
being detected, i.e., smaller Ii  in equation (1), or more pho-
tons being attenuated along the projection path i. A detector 
bin receiving less photons will be associated with a smaller 
signal-to-noise ratio (SNR) based on the Poisson noise na-
ture of the detected X-ray photons. Therefore, the WLS crite-
rion reflects the observation that the measured datum with a 
lower SNR will contribute less for the estimation of its ideal 
sinogram datum. 

Another important factor that determines the perform-
ance of the PWLS criterion is the penalty term. In CT si-
nogram processing, a commonly used regularization takes a 
quadratic form with equal weights for neighbors of equal 
distance [60-63]. Such quadratic penalty simply encourages 
the equivalence between neighbors without considering dis-
continuities in the image and may lead to over-smoothing 
around sharp edges or boundaries. When the PWLS criterion 
was used to suppress noise in CBCT projection data, Wang 
et al. [71, 72] proposed an anisotropic quadratic penalty to 
consider the difference among neighbors of 2D projection 
data of CBCT. The coupling between neighbors should be 
smaller if the absolute value of difference between them is 
larger and this kind of neighbors should contribute less to the 
concerned solution. By such choice, the anisotropic quad-
ratic-form penalty discourages the equivalence among neigh-
bors if the gradient between them is large, and the edges or 
boundaries in the image could be better preserved. 

The PWLS-based algorithm [71, 72] for noise reduction 
in low-dose CBCT was tested on a quality assurance phan-
tom and an anthropomorphic head phantom. Fig. (5) shows 
one slice of the retained image containing several strips with 

different sizes and contrasts. The CT image reconstructed by 
FDK [73] algorithm from the PWLS filtered sinogram ob-
tained at 10 mA level is comparable to that at 80 mA. Fig. 
(6) shows the horizontal profiles along the central strips (see 
ROI1 of Fig. (5c)). 

It can be observed that the edges are well preserved (as 
seen on the profiles through Fig. (5b) and (5c)) while noise 
is effectively suppressed (as seen from the profiles through 
Fig. (5a) and (5b)). Results of the anthropomorphic head 
phantom are shown in Fig. (7). It can be observed that noise 
in 10 mA CBCT images was efficiently suppressed after the 
sinogram was processed by the PWLS algorithm. The proc-
essed low-dose CT (10 mA) image was very similar to that 
of high-dose image (80 mA) by visual judgment. These 
phantom studies indicate that the imaging dose from CBCT 
can be reduced by a factor of 8 without loss of useful infor-
mation for radiotherapy. 

IV.D. Statistical Iterative Image Reconstruction 

An alternative approach to reconstruction of low-dose CT 
images is to estimate attenuation coefficients iteratively by 
maximizing a penalized likelihood function that is con-
structed based on the noise statistics of the measurements. 
Compared with analytical reconstruction algorithms, a major 
advantage of iterative algorithms is that it considers the im-
age physics, noise properties and imaging geometry ele-
gantly. Advantages of iterative reconstruction algorithms 
have been demonstrated in the reconstruction of emission 
tomographic images [74-79]. However, when applying itera-
tive reconstruction algorithms for CT imaging [80-83], long 
computational time may pose a challenge for their clinical 
applications. With the development of fast computers and 
dedicated hardwares [84, 85], iterative reconstruction algo-
rithms may be used for clinical CT reconstruction in near 
future. Recently, iterative image reconstruction algorithms 
have demonstrated superior performance for reconstruction 
of the multi-slice helical CT [86] and cardiac micro-CT [87]. 
Efforts have also been devoted to investigate the use of itera-
tive  image  reconstruction  algorithm  for  noise  reduction in 

          

(a)                                                                                (b) 

Fig. (4). Illustration of sinogram data variances calculated from repeated scans and from equation (3). (a)–result at 17 mAs, and (b)–result at 

100 mAs. These variances from the repeated scans and from the prediction of equation (3) agree with each other very well. (Figure reprinted 

with permission from Wang J. et al, 2008. An experimental study on the noise properties of x-ray CT sinogram data in Radon space, Physics 

in Medicine and Biology 53, 3327-3341:2008). 
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Fig. (5). One slice of FDK reconstructed image of the CatPhan
®

 600 phantom containing several strips: (a) from projection images acquired 

with 10 mA tube current; (b) after the sinogram of (a) was processed by the PWLS algorithm; and (c) from projection images acquired with 

80 mA tube current. The duration of pulse of X-ray is 10 ms for both scans at 10 and 80 mA levels. (Figure reprinted with permission from 

Wang J. et al, 2008. Dose reduction for kilovoltage cone-beam computed tomography in radiation therapy, Physics in Medicine and Biology, 

53, 2897-2909:2008) 

 

Fig. (6). Profiles though the central strips in Fig. (5) (indicated by ROI1). (Figure reprinted with permission from Wang J. et al, 2008. Dose 

reduction for kilovoltage cone-beam computed tomography in radiation therapy, Physics in Medicine and Biology, 53, 2897-2909:2008). 
 
low-dose CBCT. Wang et al. [88] proposed an iterative im-
age reconstruction for low-dose CBCT based on the PWLS 
criterion with the edge-preserving penalty (discussed in sec-
tion III.C.2). Results of this study are shown in Fig. (8). Fig. 
(8a) is the low-dose image reconstructed by analytical FDK 

algorithm and Fig (8b) shows the corresponding high-dose 
image reconstructed by the same FDK algorithm. It can be 
observed that the noise level is high in low-dose CBCT im-
age. Fig. (8c) shows the low-dose image reconstructed by the 
iterative PWLS algorithm using isotropic quadratic penalty.  
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Fig. (7). One slice of FDK reconstructed image of the anthropomorphic head phantom: (a) from projection images acquired with 10 mA tube 

current; (b) after sinogram acquired with 10 mA tube current are processed by the PWLS algorithm; and (c) from projection images acquired 

with 80 mA tube current. (Figure reprinted with permission from Wang J. et al, 2008. Dose reduction for kilovoltage cone-beam computed 

tomography in radiation therapy, Physics in Medicine and Biology, 53, 2897-2909:2008). 

 

 

Fig. (8). CBCT of the CatPhan
®

 600 phantom: (a) analytical FDK reconstructed image from projection data acquired using low-dose protocol 

(10 mA/10 ms) and (b) high-dose protocol (80 mA/12 ms); (c) PWLS iterative image reconstruction with isotropic quadratic penalty from 

projection data acquired using low-dose protocol and (d) with the proposed anisotropic penalty; and (e) analytical FDK reconstructed image 

after low-dose projections processed by the PWLS criterion. (Figure reprinted with permission from Wang J et al., 2009. Iterative image re-

construction for CBCT using edge-preserving prior, Medical Physics, 36, 252-260:2009). 
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Fig. 8(d) displays the low-dose image reconstructed by the 
iterative PWLS algorithm using the edge-preserving anisot-
ropic penalty. The noise in the images reconstructed by itera-
tive algorithms is greatly suppressed as compared with that 
reconstructed using analytical method of Fig. (8a). While the 
edges were blurred in the low-dose image reconstructed by 
conventional isotropic penalty, the edges in the image recon-
structed by edge-preserving penalty were better preserved, as 
indicated by arrows in Fig. (8c) and (8d). Fig. (8e) shows the 
result from the sinogram-domain smoothing [71] followed 
by analytical FDK reconstruction (described in section 
III.C.2). It can be observed that the edges in the image re-
constructed by FDK from the PWLS processed projections 
are blurred compared with the image reconstructed by the 
iterative PWLS algorithm using the anisotropic quadratic 
penalty. This initial comparison study indicates that the 
edge-preserving penalty in image domain produces higher 
image resolution than the same penalty applied in projection 
domain at the cost of much longer computational time. 

V. SUMMARY 

Low-dose CBCT is desirable in clinical applications. 
CBCT dose reduction can be achieved by filtration or colli-
mation of incident X-ray beams, reducing number of projec-
tion views and by the use of a low mAs protocol. To im-
prove image quality of scans acquired at low mAs protocol, 
several strategies have been proposed to suppress noise in-
cluding low-pass filter, local characteristics-based and statis-
tics-based image processing and reconstruction algorithms. 
Among these noise reduction algorithms, the strategy of sta-
tistics-based projection smoothing/restoration plus analytical 
image reconstruction shows very promising results for dose 
reduction in CBCT. CBCT imaging dose can be reduced 
significant without compromising image quality by using 
these advanced noise reduction techniques. 
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