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Conventionally, the inverse problem of gated cardiac SPECT is solved by reconstructing the images 
frame-by-frame, ignoring the inter-frame correlation along the time dimension.  To compensate 
for the non-uniform attenuation for quantitative cardiac imaging, iterative image reconstruction has 
been a choice which could utilize an a priori constraint on the inter-frame correlation for a 
penalized maximum likelihood (ML) solution.  However, iterative image reconstruction in the 4D 
space involves intensive computations.  In this paper, an efficient method for 4D gated SPECT 
reconstruction is developed based on Karhune-Loève (KL) transform and Novikov’s inverse 
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formula.  The temporal KL transform is first applied on the data sequence to de-correlate the 
inter-frame correlation and then the 3D principal components in the KL domain are reconstructed 
frame-by-frame using Novikov’s inverse formula with non-uniform attenuation compensation. 
Finally an inverse KL transform is performed to obtain quantitatively-reconstructed 4D images in 
the original space.  With the proposed method, 4D reconstruction can be achieved at a reasonable 
computational cost.  The results from computer simulations are very encouraging as compared to 
conventional frame-by-frame filtered back-projection and iterative ordered-subsets ML 
reconstructions.  By discarding high-order KL components for further noise reduction, the 
computation time could be further reduced.. 
 
Keywords:  Gated SPECT; analytical reconstruction; Karhune-Loève (KL) transform; Novikov’s 
inverse formula;  

 
 
1. Introduction 

Gated cardiac single photon emission computed tomography (SPECT) imaging has 
been widely used to evaluate cardiac motion and other functions.  The acquired 
four-dimensional (4D) sinogram data have both inter-frame correlation among the time 
sequence and intra-frame correlation within each 3D frame.  Currently the time 
sequence is usually reconstructed frame-by-frame using a conventional filtered 
back-projection (FBP) method, which ignores the temporal correlation, smoothes the 
noise by a low-pass spatially-invariant linear filter and lacks quantitative capability.  
The quantitative aspect can be improved by a frame-by-frame ordered-subsets 
expectation-maximization (OSEM) reconstruction 1, but the inter-frame information is 
still not utilized.  For fully 4D reconstruction, research efforts have been devoted to 
include a penalty for a penalized maximum likelihood (pML) solution, where the intra- 
and inter-frame correlations are considered in the penalty, see for example 2.  This 
classic approach is attractive because it searches for a statistical optimal solution but 
has several drawbacks, e.g., the reconstruction is time consuming because the solution 
is numerically tractable only by iterative algorithms and furthermore the solution 
strongly depends on several freely-adjustable parameters in the penalty.  An 
alternative approach has been explored by the use of the Karhune-Loève (KL) 
transform to address the temporal correlation, see for example 3. 

The KL transform, also called principal component analysis, has been investigated 
for many years to de-correlate multi-spectral, multi-band or colored images as an initial 
process for further compression, de-blurring, or de-noising 4, 5.  Since the KL 
transform has the property of de-correlating the time sequence in the KL domain and 
rearranging the principal components according to their variances, Kao, et al. 6 applied 
the KL transform for pre-reconstruction temporal sinogram smoothing for dynamic 
PET (positron emission tomography) imaging by discarding the higher order principal 
components which are dominated by noise (i.e., larger variances).  Wernick, et al. 7 
employed it to seek a penalized weighted least-squares (PWLS) estimate of the entire 
sequence in the KL domain for a fast reconstruction of dynamic PET.  Narayanan, et 
al. 3, 8 extended the above KL-based framework 6, 7 to gated SPECT and showed that it 
was almost equally effective as the 4D iterative pML reconstruction but much faster in 
computation. 
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By reviewing the previous work of using KL transform to de-correlate a dynamic 
data sequence for 4D tomographic reconstruction, it should be noted that the previous 
methods could be roughly classified into two groups.  One applies temporal 
smoothing for noise reduction in the KL domain 6, followed by frame-by-frame image 
reconstruction in the original space.  Since the reconstruction is performed in the 
image domain, compensation for quantitative SPECT is readily available 9.  The other 
group employs temporal KL transform first, then performs a frame-by-frame 
reconstruction in the KL domain and obtains the final image sequence by inverse KL 
transform.  This later approach has been explored for dynamic PET and SPECT 
without compensation in the frame-by-frame reconstruction 6, 7, and the reconstruction 
is mainly based on the Radon transform.  For quantitative SPECT, the reconstruction 
shall be based on the attenuated Radon transform.  Inverting the attenuated Radon 
transform has been an open question for many years until the recent work of Novikov 10 
and Kunyansky 11. 

In this paper, we present a quantitative reconstruction scheme for gated SPECT 
sequence in the KL domain.  In this scheme, the data sequence is considered as a 4D 
volume and the KL transform is applied along the time dimension.  In the KL domain, 
all the principal components of 3D volume are reconstructed one-by-one based on the 
Novikov’s formula which inverts the attenuated Radon transform exactly 10, 11.  Finally, 
inverse KL transform is performed to obtain the reconstructed image sequence in the 
original space. 

The presentation of this work is organized as follows.  The temporal KL 
transform of gated SPECT data sequence is introduced in Section 2.  The quantitative 
reconstruction based on the Novikov’s inverse formula in the KL domain is described 
in Section 3.  Computer simulation studies with comparison to frame-by-frame FBP 
and iterative OSEM are shown in Section 4.  Discussion and conclusion on this 
quantitative approach are presented in Section 5. 
 
 
2. KL Transform of Gated SPECT Data Sequence 

The acquired dynamic projection data sequence y  from gated cardiac SPECT 
can be expressed mathematically as the attenuated Radon transform of the source 
distribution functionλ , which reflects the mean number of gamma photons emitted by 
a radiotracer injected into the patient’s body.  The dynamic imaging procedure can be 
simply modeled as 7: 

                         λHyE =][                             (1) 

where [ ]TT
K

TT yyyy L,, 21= , [ ]TT
K

TT λλλλ L,, 21= , and T denotes the transpose 
operation.  Notation yk (k=1, 2,…, K, where K is the total number of time frames 
sampled within the cardiac cycle) represents a L×1 vector (L is the number of sinogram 
data points for each frame) obtained by lexicographically ordering the sinogram data, 
and λk represents a N×1 vector (N is the number of pixels of the source image for each 
frame).  [ ]111 ,,, HHHdiagH L= , where H1 is the system matrix that applies to each 
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single frame of data, representing the spatial-temporal system matrix of size 
NKLK × . 

Assume the measured time-activity curve at pixel (i,j) of gated cardiac SPECT is 
represented by: 

             TK
jijiji
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2
,

1
,, λλλλ L=                   (2) 

Element (k,l) of the time covariance matrix timeP  can be estimated from all the gated 
frames by: 
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where N=I*J is the total number of pixels in one frame and λ k represents the 
estimated mean value of frame k by: 

∑=
ji

k
ji

k

N ,
,

1 λλ  .                      (4) 

By singular value decomposition, the eigenvectors M of timeP  can be obtained 
from: 

VMMP TTtime ⋅=                      (5) 

where },,,{ ,2,1 Kk vvvvdiagV LL=  and kv  denotes the k-th eigenvalue of timeP . 

By multiplying the time-activity of pixels one-by-one with M, the temporal KL 
transform of the gated data can be performed by: 

time
jiMA ,λ⋅=                         (6) 

where [ ]TK
jijijiji aaaA ,

2
,

1
,, ,,, L=  and k

jia ,  is the k-th KL domain element at pixel (i,j).  
The KL transformed sequence then can be obtained by organizing Ai,j for the 
corresponding pixels (i,j) in the KL domain.  Since the KL transform is applied along 
the time dimension and the mean of each frame is computed from all N pixels in that 
frame using equation (4), all these N pixels are subjected to the same transformation. 

To express the temporal KL transform of the entire dynamic sequence in a matrix 
format, we define ML by: 

            LL IMM ⊗=                           (7) 

where LI  is the LL×  identity matrix and ⊗  is the Kronecker product.  By 
multiplying ML to both sides of the system model (1) and following the same schedule 
given by 7, we have: 
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If we define KL transformed data with: 

      yMydanM LN == ~,~ λλ .                 (9) 

The relationship between transformed gated projection data and transformed image 
sequence can be reflected by: 

                λ~]~[ HyE =                            (10) 

Please note that (10) has the same form as (1), which indicates that the KL domain 
model is the same as that in the original (or spatio-temporal) domain.  Since the 
system matrix H is exactly the same in both situations, the Novikov’s inverse formula, 
which was derived for attenuation-compensated reconstruction in the spatial domain, 
could also be applied directly for reconstruction in the KL domain.  It shall be noted 
that inverting both the Radon transform and the attenuated Radon transform is 
performed in the sinogram domain and does not trace any effect in the image domain.  
So is the presented inversion in the KL domain, where there is no any ray tracing 
between the image source and the acquired data. 

3. Quantitative Reconstruction by Novikov’s Inverse Formula in the KL Domain 

Practical SPECT system suffers from many degradation factors, such as 
non-uniform attenuation, collimator blurring and scatter.  Among them, inverting the 
attenuated Radon transform is the essential task for quantitative SPECT, though recent 
work from Gullberg's group 12, Tsui's group 13, 14, Qi’s effort 15 and our group 16 suggests 
that compensation for degradation effects of scatter and collimator blurring is quite 
beneficial.  In this study, since the major goal was to investigate the feasibility of 
inverting the attenuated Radon transform in the KL domain for 4D reconstruction, 
other degrading effects of scatter and collimator blurring are not considered.  
Novikov’s explicit inverse formula offers us a way to solve the inverse problem in an 
analytical manner 10.  Detailed description of the Novikov’s formula in a 
parallel-beam geometry and its implementation are given in 10, 11, 17.  Its extension to 
fan-beam, varying focal length fan-beam and other non-parallel beam geometries by 
various strategies can be found in 18-22.  In the following, we present our KL-domain 
Novikov’s inverse formula in a parallel-beam geometry for simplicity. 

Let (x,y) be the stationary coordinate in the image domain and (t,θ ) be the rotation 
coordinate in the sinogram space.  As shown in the last paragraph of Section 2, the 
Novikov’s formula could be used directly in the KL-domain.  Following the analysis 
in 10, 11, 17, the KL domain Novikov’s inverse formula can be expressed as: 
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where  )sin,(cos θθ=j
r , )cossin( θθ , −=k

r , div is the divergence operation, )(rrφ  is the 
reconstructed image frame from its corresponding sinogram data frame ),( θtA  in the 



92   Yi Fan et al. 

KL domain and 

)},(~)sin(),(~){cos(),(~
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22 θθ tAehHtq h=                  (14) 

with ),]([2
1

1 θμ tRh = , ),](ˆ[ 12 θthHh = .  The operators Ĥ , D, and R represent the 
Hilbert transform, the divergent beam transform, and the Radon transform, respectively, 
and are defined as follows: 
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The above quantitative reconstruction is performed frame-by-frame in the KL 
domain for each principal component, which is similar to that performed in the spatial 
domain, and the result is ),,,,,( ,
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(m,n) in the KL domain.  Since the higher-order components with smaller eigenvalues 
may have little information, only the resulted frames reconstructed from the first l 
low-order components, i.e. ),,( ,

2
,

1
,,

l
nmnmnm

l
nm φφφ L=Φ  (l≤K), could be retained for further 

noise reduction and computing efficiency. After Novikov’s inversion in the KL domain, 
an inverse KL transform on the K or l reconstructed frames will generate the gated 
images in the original space of 

Φ= Ttime
nm M,λ̂  .                        (18) 

The presented analytical reconstruction of 4D gated cardiac SPECT sequence with 
non-uniform attenuation compensation is summarized below. 

 Perform KL transform along the time projection sequence by equation (6) to 
de-correlate the inter-frame correlation and rearrange the data signal-to-noise 
ratios (SNRs) according to the eigenvalues of the KL principal components.  
The higher-order components with smaller eigenvalues may be discarded for 
further reduction of both noise and computing time. 

 Reconstruct each of the remaining KL components by equation (11), where 
the non-uniform attenuation is accurately compensated and the computation 
can be parallelized for simultaneous reconstruction of all the KL components. 

 Perform inverse KL transform on the reconstructed KL components by 
equation (18) to obtain the gated SPECT image sequence. 
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4. Experimental Results 

Computer simulations were conducted to show the feasibility of the presented 
analytical reconstruction for quantitative gated SPECT and its potential in practical use.  
The simulation studies were based on the 4D mathematical torso phantoms with 
cardiac gating along the time dimension and defects inside the myocardium (gMCAT 
and gNCAT) 23.  The relative activity levels of the heart: lungs: liver: kidney: spleen: 
sternum were 1.0: 0.03: 0.69: 0.84: 0.96: 0.12, respectively, simulating the distribution 
of Tc99m concentration in these organs 23.  The torso attenuation map was specified by 
the given organs and their locations inside the body.  A dynamic sequence consisting 
of 16-interval gated activity distributions each of 128 cubic size was generated in 
which the radiotracer distribution changes with time, simulating the ground truth.  
Noise-free projection data or sinogram from each of the 16 ground-true frames was 
computed by tracing the activity distribution of the given organs through the given 
attenuation map.  Each sinogram had a volume size of 128 cubic with 128 angular 
samples evenly spaced on 360 degrees. Since scatter and collimator blurring were not 
considered in this study, the intra-frame 3D data processing was essentially a 2D 
operation.  For simplicity, a 2D process on a 128x128 slice of the torso phantom was 
described below. 

Focusing on a 2D slice of the torso gNCAT phantom, Table 1 shows the eigenvalue 
distribution for the first four components individually and their accumulated 
summations over the sum of all eigenvalues.  The first component took 96.05% of the 
total eignvalues.  The second one took only 3.5% of the total eigenvalues.  The 
summation of the first 4 components took 99.94% of the total eigenvalues.  It is 
clearly seen that the first four principal components contain almost the entire 
information of the 16 gated frames.  The remaining 12 higher-order components 
would be very noisy with little information and could be discarded for further reduction 
of noise and computing time. 

Table 1:  Eigenvalues corresponding to the first four KL components. 

KL Component % Total Eigen-values % Sum of Total Eigen-values 
1 96.05 96.05 
2 3.50 99.54 
3 0.29 99.84 
4 0.10 99.94 

 
Five different reconstruction methods were compared: 1) frame-by-frame FBP 

reconstruction (“FBP”), 2) frame-by-frame OSEM reconstruction (“OSEM”), 3) 
frame-by-frame Novikov reconstruction (“Novikov”), 4) the proposed reconstruction 
from all the KL components (“KL-Novikov”), and 5) the proposed reconstruction from 
the first four principal components (“KL-Novikov-4”).  Figure 1 shows the phantom 
used and the reconstructed images of frames 1, 6, 11, 14 and 16 with different 
reconstruction methods. To see the detailed distribution on the myocardium, a region of 
interest (ROI) was selected in this picture presentation.  Table 2 reports the 
computational costs of different reconstruction methods. 
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Figure 1:  Temporal behavior of gated cardiac SPECT images reconstructed by different approaches for the 
gNCAT phantom in noise-free case.  From left to right – a transverse slice from temporal frame 1, 6, 11, 14 
and16.  From top to bottom – activity phantom slice, temporal correlated phantom slice, reconstructed 
image slices by FBP, iterative OSEM (with 5 iterations for each frame and subset size of 8), Novikov’s 
formula, and KL-Novikov reconstruction from all the KL components and from the first four components. 

 
Table 2:  Computational cost of different reconstruction approaches. 

Method Computation Cost Computation 
Time(s) 

FBP 16 FBP 15 
OSEM 90 iterations 66 

Novikov’s inversion 16 inversions 29 
KL-Novikov of all components KL transform + 16 inversions 31 

KL-Novikov of the first four components KL transform + 4 inversions 12 
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Figure 2:  Temporal behavior of gated cardiac SPECT images reconstructed by different approaches for the 
gNCAT phantom in noisy case.  From left to right – a transverse slice from temporal frame 1, 6, 11, 14 and 
16.  From top to bottom of the first 5 row – reconstructed image with non-filtering strategy slices by FBP, 
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OSEM(with 5 iterations for each frame and subset size of 8), Novikov’s formula, and KL-Novikov 
reconstruction from all the KL components and from the first four components.  From top to bottom of the 
last 5 row – reconstructed image with pre-filtered by Hanning filter of cutoff frequency 0.5 strategy slices by 
FBP, OSEM (with 5 iterations for each frame and subset size of 8), Novikov’s formula, and KL-Novikov 
reconstruction from all the KL components and from the first four components. 

 
The standard FBP reconstruction frame-by-frame with ramp filter at the Nyquist 

frequency cutoff took a total of 15 seconds on a PC with 1.5GHz CPU and 1.0GB 
RAM.  Since it did not compensate for the attenuation, the reconstructed images show 
expected density variation on a uniformly distributed region.  The iterative OSEM 
converged quickly to a stable estimate after 5 iterations.  The total of 90 iterations for 
the 16 gated frames cost a total of 66 seconds.  Due to its capability to compensate for 
the attenuation, OSEM generated quite good results.  However, some density variation 
on a uniformly distributed region was seen because of its non-uniform convergence 
behavior across the field-of-view (FOV).  This observation on OSEM reconstruction 
is consistent with the previous studies, see for example 24.  Applying the Novikov’s 
inverse formula of equation (6) directly to each of the 16 sinogram frames also 
generated very good results.  The total time cost was 29 seconds, with a significant 
reduction on computing time over the OSEM.  The presented KL-Novikov inversion 
on all the 16 frames took 31 seconds.  By discarding the higher-order components 
(only the first four components reserved), the presented quantitative inversion for gated 
SPECT reconstruction of 16 frames only took 12 seconds. 

It is noted that the first row of Figure 1 was generated directly from gNCAT 
phantom.  Since there is no correlation present between slices of neighboring frames, 
"temporal correlated phantom slices", shown in the images of the second row of Figure 
1, were generated by weighted averaging (0.1:0.2:0.4:0.2:0.1) of 5 consecutive 
phantom slices.  In this noise-free case, the KL transform offered limited benefit to 
gated studies visually.  However, all the quantitative inversion results showed 
excellent uniformity for a uniform source region across the FOV.  To simulate noisy 
cases, Poisson noise was added to ideal sinograms generated.  The total count was 
20K per view, and the reconstructed slices are shown in Figure 2.  The inversion 
without KL transform had a higher noise level compared to the inversion with KL 
transform.  More noise reduction was observed by discarding the higher-order 
components 

To assess and compare the regional performance of the above five reconstruction 
schemes, the regional bias-variance plots are generated.  The bias and variance 
estimates were calculated for each of the five schemes as follows: 
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ROIZ 1  is the mean value of the true 

image in the ROI, and ( )ROIZ  is the mean of ( )ROIZ j . 

In this study, 200 realization of the gNCAT phantom with Poisson noise were 
simulated.  A regions include 24 pixels located within the left ventricular wall 
(marked on the left-top image of Figure 2) was selected to calculate regional bias and 
variance.  In order to establish more comprehensive evaluation, both non-filtering 
strategies and pre-filtering strategies (which filters the projection data by the Hannning 
with cutoff frequency 0.5 before reconstruction) for all the five reconstruction methods 
were carried out. 

The region bias-variance plots are show in Figure 3 and Figure 4 for the 
non-filtering and pre-filtering strategies, respectively.  The KL-Novikov with all 
components obtained almost the same results with that of Novikov, so it was not shown 
in the figures.  Note that KL-Novikov with the first four components (KL-Novikov-4) 
obtained the best results for all the strategies. 

 

 
 

Figure 3:  Bias-variance plot of given ROI in reconstructed image of frame 1, 6, 11, 14, and 16 for 
non-filtering strategy. 
 
 

The second simulation study was based on the gMCAT torso phantom with 
defects inside the myocardium.  The relative activity levels of different organs are 
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similar to those of gNCAT phantom.  The gated sequences were generated with no 
spatial variance. Similar simulation and reconstruction procedures to the study using 
the gNCAT phantom were repeated here for the gMCAT phantom.  The results for 
noise-free case are shown in Figure 5, while the results for noisy cases are shown in 
Figure 6.  To more quantitatively demonstrate the detectability of defects using 
different reconstruction methods, horizontal density profiles through the defect for the 
first frame were also given as the first column. 
 

 
 

Figure 4:  Bias-variance plot of given ROI in reconstructed image of frame 1, 6, 11, 14, and 16 for 
pre-filtering strategy. 

 
To save more computing time, we even discarded more higher-order principal 

components.  Only the first two components were used for fast reconstruction.  A 
similar conclusion to the use of four components can be drawn from the results of 
Figure 5 in noise-free cases and that of Figure 6 in noisy cases.  From the intensity 
profiles in Figures 5 and 6, we can see that for lesion detectability, the OSEM, 
KL-Novikov and Novikov have a similar performance, outperforming the conventional 
FBP method. 

From above simulation results, it can be noticed that the inversion results show 
some streak artifacts around borders compared to iterative approaches.  To 
demonstrate the influence of streak artifacts on lesion detectability, Figure 7 gives a 
density profile along a vertical line between the left border and the liver (marked on the 
left-top image of Figure 1).  It shows that due to unoptimizable implementation of the 
inverse formula given in equation (11), the density value reconstructed from Novikov’s 
method fluctuates greater along the true value compared to iterative methods, which 
may reduce the detectability in border regions. 
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Figure 5:  Temporal behavior of gated cardiac SPECT images reconstructed by different approaches for the 
gMCAT phantom in noise-free case.  From left to right: density profile of frame 1 through the defect (the 
horizontal line is marked on the first profle), transverse slices from temporal frame 1, 5, 11and 16.  From 
top to bottom: activity phantom, reconstructed image slices by FBP (no attenuation compensation), OSEM 
(with 5 iterations for each frame and subset size of 8), Novikov’s formula, and KL-Novikov reconstruction 
from all the KL principal components and from the first 2 components. 
 

5. Discussion and Conclusion 

In this paper, an analytical reconstruction scheme for quantitative gated SPECT 
was presented.  The temporal correlation among the gated sequence of sinogram 
frames was considered by the KL transform.  In the KL domain, the higher-order 
principal components with smaller eigenvalues could be discarded for reduction of 
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both noise and computing time.  Quantitative inversion with the principal component 
analysis demonstrated improvement in noisy case over the quantitative inversion 
without the KL transform. 
 

 

 

 

 

 
 

Figure 6:  Temporal behavior of gated cardiac SPECT images reconstructed by different approaches for the 
gMCAT phantom in noisy case.  From left to right: density profile of frame 1 through the defect (the 
horizontal line is marked on the first profle), transverse slices from temporal frame 1, 5, 11and 16.  From 
top to bottom – reconstructed image with non-filtering strategy slices by FBP, OSEM (with 5 iterations for 
each frame and subset size of 8), Novikov’s formula, and KL-Novikov reconstruction from all the KL 
components and from the first two components. 
 
 

The presented analytical reconstruction of gated SPECT has several advantages 
over the conventional FBP method such as (1) having quantitative capability by 
compensating for the non-uniform attenuation and (2) being more effective in noise 
reduction because of the unique SNR distribution among the KL principal components, 
where the noise treatment can be adaptive to each component 9, 25.  Compared to the 
well-known OSEM, the presented inversion approach is computationally efficient and 
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has a more consistent performance on resolution uniformity across the FOV. 

The presented analytical inversion approach also has several drawbacks compared 
to iterative pML reconstruction.  Due to the band-limited sampling of the data and an 
imposed frequency cutoff either explicitly or implicitly in the inversion process 
(depending on different implementations of the inverse formula of equation (11) 11, 21), 
the inversion results show some streak artifacts around borders, as shown in Figure 7, 
and somewhat smoothed edge compared to that of iterative approaches.  More effort 
should be devoted to improve the practical performance of the Novikov’s inverse 
formula.  In general, a mathematically-rigorous inversion is less tolerant than an 
iterative approach on data sampling error, noise and incompleteness.  Therefore, more 
powerful filtering strategy should be utilized when the Novikov’s inverse formula is 
involved in an analytical approach to quantitative SPECT image reconstruction. 
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Figure 7:  Density profile along a vertical line between the left border and the liver (marked on the left-top 
image of Figure 1).  Upper solid line -- phantom density; lower solid line – FBP; dotted line – OSEM; 
dashed line – Novikov; and dash-dot line – KL-Novikov-4. 
 
 

In the presented KL-transform along the time sequence, time covariance matrix 
was computed using all pixels in each frame.  In other words, all the pixels in each 
frame underwent the same transformation.  This may add in more edge blurring in the 
inversion results.  This drawback could be mitigated by clustering the pixels into 
subgroups and applying spatially-variant KL transform on each subgroup, as proposed 
in 26.  This adaptive KL transform strategy and other possible solutions are currently 
under investigation. 

As we noted before, the practical SPECT systems also suffer from other 
degradation factors, such as depth dependent blurring and scatter.  For quantitative 
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reconstruction, appropriate compensation for those factors should also be included into 
the analytical framework.  In this present study, our major goal is to investigate the 
feasibility of FBP-type solution in the KL domain for 4D reconstruction.  Therefore, 
only the inversion of the attenuated Radon transform was considered in the imaging 
model.  The preliminary results shown in this paper can be regarded only as 
quasi-quantitative.  An analytical framework based on more realistic imaging model, 
including the depth dependent blurring and scatter, should be developed for 
quantitative gated SPECT in the future. 
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