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A multinomial image model is proposed which uses intensity-level information for reconstruction
of contiguous image regions. The intensity-level information assumes that image intensities are
relatively constant within contiguous regions over the image-pixel array and that intensity levels
of these regions are determined either empirically or theoretically by information criteria. These
conditions may be valid, for example, for cardiac blood-pool imaging, where the intensity levels
(or radionuclide activities) of myocardium, blood-pool, and background regions are distinct and
the activities within each region of muscle, blood, or background are relatively uniform. To test
the model, a mathematical phantom over a 64 X 64 array was constructed. The phantom had
three contiguous regions. Each region had a different intensity level. Measurements from the
phantom were simulated using an emission-tomography geometry. Fifty projections were
generated over 180°, with 64 equally spaced parallel rays per projection. Projection data were
randomized to contain Poisson noise. Image reconstructions were performed using an iterative
maximum a posteriori probability procedure. The contiguous regions corresponding to the three
intensity levels were automatically segmented. Simultaneously, the edges of the regions were
sharpened. Noise in the reconstructed images was significantly suppressed. Convergence of the
iterative procedure to the phantom was observed. Compared with maximum likelihood and
filtered-backprojection approaches, the results obtained using the maximum a posteriori
probability with the intensity-level information demonstrated qualitative and quantitative
improvement in localizing the regions of varying intensities.
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I. INTRODUCTION

The importance of identifying isolated regions of interests
(ROIs) (e.g., organs and/or tumors) within the body in
medical image processing is well known.'™ For example, in
cardiac blood-pool imaging, if the boundaries of the blood-
pool within the ventricle can be identified at different times,
then the blood volume curve within the ventricle can be de-
termined.

Conventionally, ROISs are identified by two steps. First, an
image is reconstructed from acquired data by use of a recon-
struction method.*® A segmentation or enhancement tech-
nique is then applied to the reconstructed image.*” After the
first step the reconstructed regions of different objects (or
tissues) are usually interlaced and the boundaries are
blurred due to low-count density of acquired data and arti-
facts relating to object motion, detection errors, etc. In the
second step, although segmentation techniques can be used
to mitigate the problem associated with the interlacing and
blur, the segmented image might not be consistent with the
acquired data and the artifacts in the reconstructed image
remain.

In this paper, we propose a maximum a posteriori proba-
bility (MAP) method to simultaneously reconstruct and
segment images. The method considers both the noise statis-
tics of the acquired data and the following characteristics of
images: (1) image intensity is nonnegative; (2) image-inten-
sity distribution is conserved; (3) image intensities are rela-
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tively constant within contiguous regions over the image-
pixel array; and (4) the intensity levels of these regions are
determined either empirically or theoretically by selected
information criteria.

The nonnegativity and conservation of image-intensity
distributions are applicable in most imaging situations. The
intensity-level information of piecewise continuous distribu-
tions may be valid for some imaging studies. For example,
for cardiac blood-pool imaging, the intensities (or radionu-
clide activities) of myocardium, blood-pool, and back-
ground regions are distinct and are relatively uniform within
each region. The activity levels of the muscle, blood, and
background can be determined before performing image re-
construction. Empirically, the radionuclide activity of the
blood can be measured by taking a blood sample from the
patient. The activity of the muscle may be assumed to be
negligible. The activity of surrounding tissue (or back-
ground) outside the heart may be determined from previous
studies of typical blood-pool/background ratios and from
the acquired data and the measured radionuclide activity of
the blood. A theoretical discussion for determining the in-
tensity levels by applying information criteria to the ac-
quired data is included in the Appendix.

In the computer simulations presented by this paper, we
assumed that the intensity levels were estimated with about
5% errors from a known phantom which consists of differ-
ent ROIs with three distinct true levels. The three assumed
intensity levels with 5% errors and the simulated projection
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data from the phantom were then used to simultaneously
reconstruct and segment images. The reconstructed image is
expected to consist of different regions with three relatively
uniform intensity levels. The three reconstructed intensities,
although relatively uniform, may not necessarily be the same
as the three assumed intensities, since the reconstructed im-
age must be consistent with the projection data. The recon-
structed regions should correspond to the ROIs of the phan-
tom (i.e., the image is simultaneously reconstructed and
segmented).® Our simulations confirmed this expectation.
The reconstructed regions corresponding to the three as-
sumed intensity levels were automatically segmented and,
simultaneously, the edges of the regions were sharpened.
The reconstructed levels were closer to the true levels of the
phantom, as compared with the assumed intensity levels.
Noise in the reconstructed images was significantly sup-
pressed. A root-mean-square error (RMSE) criterion* was
used to show the convergence behavior of the iterative MAP
reconstruction procedure. Compared with maximum likeli-

hood (ML) and filtered-backprojection (FBP) approaches,

the simulation resuits using intensity-level information dem-
onstrated qualitative and quantitative improvement in iden-
tifying ROIs. Further studies using experimental and clini-
cal imaging data are in progress.

Il. THEORY

In order to facilitate the discussion of the multinomial
image model and the intensity-level information, the source
region is partitioned into J small square regions (or pixels).
Each pixel is assigned a value ¢, which represents the aver-
age of source intensity over pixel j. In emission tomography,
¢, reflects the average photon emission in pixel j per unit
time at time = O (at time = 0 means that the decay of radioi-
sotope should be considered and corrected, if necessary).
Then ® = {¢,}/_, represents the average emission map
over the source-pixel array at time = O, which is the true
image to be reconstructed. For our formulation, we will as-
sume that the average photon emission ¢, per unit time is an
integer variable in the range from zero to a finite value. The
discrete value ¢, is proportional to the continuous radioiso-
tope concentration in pixel j. The finite value is related to the
finite total dose injected into the body.

The emission map over the source array may be viewed as
adistribution of photons over the pixels. The total number of
photons in the distribution is the total average emissions,
N = Z,¢,. The constant N is proportional to the dose inject-
ed into the body. If the N photons can be assumed as to be
distributed over the J pixels in different ways, all the distri-
butions make up an ensemble. We attempt to find that distri-
bution which is most probable in the ensemble and which is
also consistent with the acquired data. The distribution of N
photons over J pixels in the array follows the multinomial
process.” Let p; represent the a priori probability of a photon
emitted from pixel j, the probability of a distribution {g;}
(or an emission map) occurring over the pixel array is ex-
pressed as™'®

P<<I>>~—f—v—— I 1"
¢1 Jj=1

and
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i.e., the multinomial image model. The a priori probability
map {p;} associated with the source array is developed in
this paper to consider the intensity-level information.

In some imaging situations, the emission map (or source
distribution) {¢,} may be relatively constant within regions
over the source pixel array. The emission intensities of these
regions may be determined either empirically or theoretical-
ly before performing image reconstruction. Mathematically,
the intensity-level information is characterized by a set of
assumed intensity levels {#¢}~_ |, where K is the number of
the levels. For simplicity, we consider only three intensity
levels in the following to derive the mathematical expres-
sions of {p,} and to verify these mathematical formulas by
computer simulations. It is straightforward to extend the
formulas to include more intensity levels. The three intensity
levels are (1) &5 for cold region, (2) &5 for hot regions, and
(3) ¢5 for background. The values of ¢, ¢5, and ¢% are
assumed to have been determined empirically with about
5% errors from actual intensity levels. A theoretical deter-
mination using information criteria is given in the Appendix.
If each photon has same chance of being emitted from the
three intensity levels, then we have'!!2

pj(¢jl¢:)pj(¢ )~_ E 6(¢ ¢e)’ (2)

s=1
where p; (4¢) = 1, because the levels {¢:} and the number of
levels have been determined before performing image recon-
struction. Since the emission in each region is not strictly
uniform, a Gaussian form, rather than delta function, may
be used to refiect the relative uniform variation''*?

1 — (¢, — ¢9)°
p= Z ¢, exp( 20 ), (3
where ¢, is the normalization constant and o, is the standard
deviation of ¢; around ¢;. In practice, since each photon
would have different chances of being emitted from the three
intensity levels, the more general form of p ), can be expressed
as

2(®)=> we, exp( (4)
where w, reflects the ratio of the number of pixels having the
similar intensity ¢; to the total number J of pixels in the
source array.'"'> In this paper, we determine w, using the
neighbors of pixel j. For example, if only first-order neigh-
bors of pixel j are considered, w, is the ratio of the number of
pixels (among the five pixels) having the similar intensity ¢¢
to five (i.e., pixel j plus the four nearest neighbors). To en-
sure continuity within each region of the ROIs and discon-
tinuity at the boundaries of different intensity regions, func-
tion (4) is modified as'?

p;(P)

- (¢, - ¢§)2)
25> ’

5

_ — (¢, — ¢7)° (¢j+q—¢§)2)
= ZS: w,c, exp( 27 ; 20 ,
(5)

where index g covers three neighbors of pixel j. It is assumed
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that the three neighbors are adjacent to each other and have
intensities similar to that of pixel j.'* A hierarchical model
similar to that of expressions (4) and (5) has been investi-
gated for segmentation in Refs. 7 and 15. If the nonnegativity
and conservation of image distributions are ignored, the im-
age model expressed by (1) and (5) above is somewhat simi-
lar to the hierarchical model.”'”

Up to now, we have discussed the source (or image) dis-
tribution process expressed by (1) and (5). That source dis-
tribution (or configuration), which has the highest proba-
bility P(®) and is also consistent with the acquired data,
would be the choice. This most probable distribution is
usually assumed to be the representation of the actual source
distribution. There may be other ways to approach the most
probable distribution ®* = {¢*} consistent with the ac-
quired data. In this paper, however, we treat P(®) as a priori
probability of the source distribution and try to find that
probable solution ®* which is consistent with the most prob-
able likelihood of the data distribution. In emission tomo-
graphy, the Poisson likelihood of a data distribution is well
established as'®!”

P(Y|®) = ﬁ exp( — ; R,-jqﬁj)(; R,.j¢j)y/Y}!, (6)

i=1

where R;; is the probability of detecting photons from pixel
for projection ray 7, Y, is the number of photons detected for
projection ray i, and Y = {¥,}/_, ({is the number of con-
tributing rays). The assumption made in (6) is that each
data element Y, is a Poisson variable with a mean 2R ¢,
and all elements { Y, } are independent. The means {2 R}
of the Poisson variables { Y, } reflect the relation between the
acquired data and the source {(;5 j} via the probability matrix
{R;}. Since {R} are continuously distributed over the in-
terval [0,1], the means {3, R ;¢, } are continuous values over
[0, 0 ). Since the emissions are relatively uniform over a 47
solid angle, the values {R ij} are very small for a conventional
ring detector system. For parallel ray geometry, the value R,
can be assumed to be proportional to the intersection length
of pixel j and projection ray i.*> If {R} are chosen as the
intersection lengths of the pixels and the projection rays, the
pixel values {¢, } will be divided by the proportional factor, if
the acquired data are used directly. Then the reconstructed
image values are real over [0, e ). In practice, the propor-
tional factor is usually neglected for image display. How-
ever, for quantitative evaluation of images, as in single pho-
ton or positron emission tomography, the proportional
factor must be considered.’

The MAP method proposed in this paper to obtain the
most probable solution ®* is formulated, via Bayes’ law of
P(®|Y) = P(Y|D)P(D)/P(Y), as |

P(®*|Y) = P(Y|P*)P(P*) = maximum
or
In P(Y|®*) + In P(P*) = maximum. (N

Directly solving Eq. (7) for ®* is very difficult due to the
large size of the matrix {R ;J. For example, if 50 projections
each with 64 rays are acquired from an image-pixel array of
64 X 64, the size of the matrix is 3200 X 4096. An iterative
approach may be therefore more practical. The expectation-
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maximization (EM) technique'® is then employed to com-
pute the solution ®*:"?

3, Ry (Y,/3, R;8{™)

(,"+1)= (>n> , (8)
g WS R ez
where
Z, (D)= J P(®
k( )’— _a_¢1n ( )I¢:<D"”+Ad"”
and
& =lan/(b+m] 3 Ry >0. 9)
In(9),A=~landd {” = ¢\ — ¢}" ~ " can be chosen to faci-

litate computation; £ | increases smoothly as the iterative
index n increases and £ |~ is set to be the maximal value

m) after miterations. The valuesa = 0.05and b = 50 were
used in the simulation studies. A detailed discussion of the
empirically determined parameter & {” is available in Refs.

10 and 14. The expression of Z, is
)-vse]
k s

2
N [(‘WZ Qs) I ACE ¢§)/af], (10)

s

Z, (P) = Kln o, +

where

_ _ 4ey2 _ AeN2
QS _ LUSCS exp( (¢k ¢v) _ (¢k+q ¢Y) ) .

207 2 ’

p 7 20,

(1)

This iterative Bayesian image processing ( BIP) algorithm

(8) has been applied to computer-simulated noise-free pro-

jections and randomized projections containing Poisson

noise. The performance of algorithm (8), as compared with

the iterative ML algorithm'®'” and the FBP method,*® is
presented in the following sections.

ill. METHODS

In this section, we describe the computer simulations for
the phantom and the projections.
Figure 1 shows the mathematical phantom {S;} with

F1G. 1. The simulated phanton with three distinct intensity levels: the cold
region of 2 intensity units, the hot region of 4.5 units, and the background of
3 units. The curve represents the intensity profile crossing along the center
line. Note that the three regions within the phantom do not include the
region exterior to the phantom, which has zero intensity.
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three intensity levels, from which the values of {¢¢, ¢¢, and
#% } were assumed with 5% errors as mentioned before. The
curve represents the true intensity profile through the center
of the phantom. The central portion is the cold region asso-
ciated with ¢], and each pixel within this region has the true
intensity of 2.0 units. The intensity units are proportional to
emissions per unit time. The proportionality factor is deter-
mined by the chosen values of {R;} as mentioned previous-
ly. The outer region is the background related to ¢5. Each
pixel within this region has the true intensity of 3.0 units.
The region between the cold and background regions repre-
sents the hot region (related to ¢5 ). This region has the true
intensity of 4.5 units (4.5 was chosen to make the ra-
tio = 4.5/3 = 3/2). The a priori assumed three intensity lev-
els with about 5% errors from the phantom values were cho-
sen as ¢} = 2.1 units (for the cold region), ¢5 = 3.1 units
(for the background), and ¢5 = 4.4 units (for the hot re-
gion). Fifty projections were simulated using a parallel beam
geometry. Noise-free projection data were calculated by
{3,R;S,}. Each element of the projection matrix {R,;} was
determined by two-point interpolation technique.'® By care-
fully normalizing the projection matrix, each element R,
represents the probability of detecting photons from pixel j
for projection ray i (see Sec. I1). The noise-free projection
data were assumed to be the means of randomized projection
data, respectively. Each randomized projection datum Y,
was generated by a Poisson random number generator®®
around its mean Z,R;S;. The sum of the means was 479

499.94, and the total simulated counts {Y,} was 479 588.

IV. RESULTS

In this section, we present the reconstructed images using
the iterative BIP algorithm (8) for the simulated projection
data from the mathematically specified phantom with three
distinct intensity levels. The images are compared with those
obtained using the iterative ML algorithm'®!” and the FBP
method.*?

Figure 2 shows the images reconstructed from the simu-
lated noise-free projection data using the iterative BIP algo-
rithm (8) after 10, 20, and 50 iterations. The curves repre-
sent intensity profiles through the centers of the images,
respectively. After 20 iterations, regions with intensities
about 2, 3, and 4.5 units were obtained. Similar results were
observed using the iterative ML algorithm'®!” and FBP
method*® also for the noise-free projection data. The con-
vergences of the iterative BIP and ML algorithms are com-
pared in Fig. 3, using the RMSE criterion*

RusE = [(3 @ -5)7)(z 05 -97) |7

7
(12)
where S is the average of {S,}.

Figure 4 shows the reconstructed images using the BIP
algorithm after 10, 20, and 50 iterations for the simulated
projection data containing Poisson noise. The convergence
behavior is shown in Fig. 5, compared as before with the ML
algorithm. For comparison, the images reconstructed from
the noisy projection data using the ML algorithm after 10,
20, and 50 iterations are shown in Fig. 6; the reconstructed
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F1G. 2. The images reconstructed from the simulated noise-free projections
using the BIP algorithm after 10, 20, and 50 iterations. Curves represent
intensity cross profiles.

images using the FBP method with a Ramp filter and with
Hann filters of 1.0 and 0.5 Nyquist frequency cutoffs are
shown in Fig. 7.

Quantitative comparisons in terms of mean, standard de-
viation, and standard deviation from the phantom are given
in Table I. The calculations were carried out only using the
profiles through the center of the image.

In further tests of the iterative BIP algorithm (8), we add-
ed intensity levels of ¢5 = 0.0, ¢5 = 1.0, and ¢¢ = 6.0, and

x10°6

Root-Mean-Square-Error

0.00 10.00 20.00 30.00 40.00 50.00

Iteration

F1G. 3. The computed RMSEs as a function of iterative number for the BIP
and ML algorithms in the case of noise-free projections.
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APPENDIX

In this section, a theoretical discussion for determining
intensity levels by applying information criteria to acquired
projection data is given. Since the intensity levels are deter-
mined in image space rather than in projection space, the
acquired projection data are backprojected first to the image
space. This step can be accomplished with a conventional
backprojection method.** Let X = {x, }}_ | be the backpro-
jected data vector with J, elements in image space. The in-
formation criteria discussed here are the Akaike information
criterion (AIC)%

AIC(O) = —2In[¥(X|O)] + 2K, (A1)

and the minimum description length (MDL) information
criterion®***

MDL(8) = — In[¥(X|0)] + 1K, In J,, (A2)

where ¥ (X|O) is the maximum likelihood of backprojected
data vector X given the parameter vector O, and K|, is the
number of freely adjustable parameters in ©. These criteria
are usually deployed, post hoc, to select one from a number
of models having different dimensions of 6, given X. The
models are defined by the likelihood ¥ (X|6©) with different
forms characterized by the parameter vector ©, or with one
and the same form but with different restrictions on the pa-
rameter vector O. In the former case, there are a number of
models defined by the different likelihood forms. For each
different form, the corresponding parameter vector O is de-
termined by maximizing the corresponding likelihood. The
information criterion AIC or MDL is used to select one of
these models. The one selected minimizes the criterion (A1)
or (A2). In the latter case, there are a number of models
defined by the same likelihood form with different restric-
tions on the parameter vector © or with different parameter
vectors. These parameter vectors are determined by maxi-
mizing the likelihood with the restrictions on ©. One vector
(or one model in this case) is then selected from these vec-
tors by minimizing the criterion (A1) or (A2). The latter
approach may be appropriate for selecting the intensity lev-
els from the backprojected data. There may be a number of
models of the same likelihood form with different numbers
of intensity levels. The model which minimizes AIC or
MDL is selected, and this mode! will have a specific number
of intensity levels.

Using the notations of this paper, the likelihood is formu-
lated as follows. The backprojected data vector X has J ele-
ments, orJ, = J. Let f(x,|6,) represent the Gaussian func-
tion in (4), or

207

s

flx,|60,) = Q2moy) ~ 12 exp( —M—> ,

r=12,..J, s=12,.,K, (A3)
where © = {0, = (#7,02)}%_, is a row vector of 2K ele-
ments, and X is the number of intensity levels. Assume that
W={w}*_ |, (0O<w, <1, w, = 1), are the weights of f
(x,|6,). The likelihood function for X is then expressed as®®
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J
LX{W,0) = [] g(x,|1%,0)

r=1

J K
=1l I w/ix.10,). (A4)
r=1s=1

and
¥(x|0) = max{L(x|W,0)}.
Now we have a number of models of a Gaussian likelihood
form {6, = (¢¢,07)} with different dimensions (or levels)
K. The problem of determining the intensity levels is to select
the K value and therefore the values of {6, = (¢¢,07)}. This
problem is the same as that of the second case mentioned
above. For different K, there are different models of a Gaus-
sian likelihood form with different parameter vectors @ (K).
That model with K levels, which minimizes the information
criterion AIC or MDL, will be selected. The numerical cal-
culations for X can be performed as follows: (1) determine
the relation between K and K; (2) assume a K value, which
is in a prespecified range [K,;,, K...], where
Koin <K, <K,,,\; (3) maximize ¥ (X|O) with respect to ©
for the assumed K value; (4) compute the criterion value of
AIC or MDL; (5) repeat steps (2)—(4) for K + 1 values;
(6) if the calculated criterion value for K using AIC or MDL
is less than those for K + 1, then K, = K is selected, other-
wise, K + 2 are assumed and the steps above are repeated. In
(A4), there are K, = 3K — 1 freely adjustable parameters:
2K free parametersof {6, = (¢¢,07)}and K — 1 free param-
eters of {w, }; hence step (1) is accomplished. The starting
value K in the step (2) is chosen arbitrarily, depending on
one’s prior knowledge about the backprojected data {x, }. If
the starting value K is chosen closer to K, then less compu-
tation time is needed. Many numerical techniques can be
used to maximize the likelihood with respect to the param-
eters {6, 1.7 Investigation on this topic is under progress.

Note that the information criteria provide a possible
means to theoretically determine the intensity levels. Both
criteria measure the Kullback—Leibler mean distance (or
the directed Kullback divergence®® ) between the estimated
model and the model which generates the measured data,
and selected that model which minimizes the criterion (A1)
or (A2).

It has been shown that when AIC is used in mode! selec-
tion, that model with minimum AIC gives the minimum
mean-squared error of prediction.?® If the maximum likeli-
hood is identical for two models, AIC selects that one with
less freely adjustable parameters {6, }.

The difference between AIC and MDL is due to the pen-
alty terms of (2K, ) for AIC and (K, InJ;) for MDL. The
former assumes a uniform prior to all model candidates and
proposes to select the model which yields the maximum like-
lihood, so the penalty term of AIC is independent of the
number of measured data. The latter one, however, assigns
each competing model an a priori probability and selects the
model which yields the maximum posteriori probability. De-
tailed comments on the two criteria can be found in Refs. 30—
32.
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