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Abstract—An automatic method has been developed for
segmentation of abdominal computed tomography (CT) images
for virtual colonoscopy obtained after a bowel preparation of a
low-residue diet with ingested contrast solutions to enhance the
image intensities of residual colonic materials. Removal of the
enhanced materials was performed electronically by a computer
algorithm. The method is a multistage approach that employs
a modified self-adaptive on-line vector quantization technique
for a low-level image classification and utilizes a region-growing
strategy for a high-level feature extraction. The low-level clas-
sification labels each voxel based on statistical analysis of its
three-dimensional intensity vectors consisting of nearby voxels.
The high-level processing extracts the labeled stool, fluid and air
voxels within the colon, and eliminates bone and lung voxels which
have similar image intensities as the enhanced materials and air,
but are physically separated from the colon. This method was
evaluated by volunteer studies based on both objective and sub-
jective criteria. The validation demonstrated that the method has
a high reproducibility and repeatability and a small error due to
partial volume effect. As a result of this electronic colon cleansing,
routine physical bowel cleansing prior to virtual colonoscopy may
not be necessary.

Index Terms—Bowel preparation, electronic colon cleansing,
image segmentation, virtual colonoscopy.

I. INTRODUCTION

COLORECTAL carcinoma is the second leading cause of
cancer-related deaths in the United States with 56 000

deaths reported in 1998 and an estimated 131 600 new cases
were diagnosed [20]. Colonic polyps that are 10 mm or larger
in diameter are considered to be clinically significant, since
they have a high probability of being malignant [15]. Detection
and removal of smaller sized polyps can eliminate over 90% of
colon cancer cases.

Currently available colorectal cancer screening procedures
include digital rectal examination, fecal occult blood test, flex-
ible sigmoidoscopy, barium enema, and optical colonoscopy.
These diagnostic tests differ greatly with respect to safety,
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ease of performance, degree of patient compliance, expense,
and diagnostic accuracy. Among these methods, only optical
colonoscopy and barium enema might be able to examine
the entire colon. Optical colonoscopy requires intravenous
sedation, takes approximately one hour to perform, has dif-
ficulty in examing the cecum, the most distal portion, and
is expensive. Barium enema requires a great deal of patient
physical cooperation to obtain X-rays at different views, and
has a low sensitivity. In recent years, virtual colonoscopy
technology has been developed as an alternative method of
massive population screening for examining the entire colon
for early cancer detection [6], [7], [11], [13], [14], [18]. This
technology uses a computer system to navigate through the
colon model reconstructed from the patient’s abdominal CT
images. It has been shown that this technology is effective in
imaging colonic polyps as small as 3 mm in diameter [8].

All techniques that examine the colon require a clean lumen,
eliminating residual materials that can falsely be interpreted as
colonic masses. Prior to any of these examinations, patients
undergo a bowel cleansing preparation which includes either
washing the colon with a large amount of liquids or adminis-
tering medications and enemas to induce bowel movements [7],
[18]. This bowel preparation is often more unpleasant than the
examination itself. An alternative method of cleansing the colon
would be very attractive. In virtual colonoscopy, contrast solu-
tions can be ingested to enhance the image intensities of the
stool and fluid. By applying image segmentation algorithms,
these colonic materials can be virtually removed from the im-
ages without the patient undergoing physical bowel washing.
This paper will focus on the development of an automatic seg-
mentation method to remove the contrasted colonic materials
for virtual colonoscopy.

II. M ETHODS AND MATERIALS

A. Bowel Preparation and Imaging Protocol

Five volunteers were recruited for this study with written con-
sents. Some of these subjects were used as training samples for
validating the hypothesis of the method and all of them were
used for evaluating the performance of the method. The training
samples were chosen for an equal distribution in gender with a
wide age range, see Table I, where three patients were added to
include variation in a large population. All volunteers had the
following bowel preparation. During the day prior to CT scan,
the volunteers took a high fluid, low residue diet for the meals. In
order to enhance residual colonic materials, they ingested con-
trast solutions of 250 cc barium sulfate suspension (2.1% w/v,
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TABLE I
SUBJECTINFORMATION, WHERE F AND M STAND FOR THE FEMALE AND

MALE, AND V AND P FOR THEVOLUNTEER AND PATIENT

E-Z-EM, Inc.) with each meal and 120 ml of MD-Gastroview
(diatriuzoate meglumine and diatriozoate sodium solutions) in
equal 60 ml amounts during the evening and in the morning
before the CT scan. All patients used the same bowel prepara-
tion with addition of magnesium citrate laxative and bisacodyl
tablets and suppository for physical colon cleansing.

Prior to acquiring CT images, 1.0 mg of Glucagon was given
intravenously in order to reduce colonic motion and spasm, fol-
lowed by introducing approximately 1000 cc of COthrough a
small bore rectal tube to inflate the colon. All CT images were
acquired in less than 40 s during a single breath hold. Using a
GE/CTI spiral CT scanner, 5mm collimation with pitch between
1.5–2.0 : 1, depending upon the span of the colon as determined
from a digital scout radiograph, was performed. Scan parame-
ters included 120 kVp, 180–280 mA (lower mA for volunteers)
and field of view (FOV) between 34–40 cm based on the ab-
dominal size. The acquired data were reconstructed at 1-mm in-
tervals with a 512 512 array, resulting in 300–450 slices for
each dataset. Both supine and prone positions were scanned for
validation purpose. For the same purpose, each volunteer was
also scanned in the following day after the first CT scan and a
day of low-residue diet, resulting in four datasets.

B. Feature Analysis of Image Data

To minimize computing time, the voxels outside the body
contour were first eliminated. The remaining is called body
voxels. This was achieved by a boundary-search algorithm [9].
Similar to Markov random field (MRF) models [5], [9], [12],
[19], we assume that a three–dimensional (3-D) object of a
similar tissue type in a CT image should be in a contiguous
3-D volume, naturally including partial volume effect. It is
reasonable to classify the body voxels based on the intensity
similarity within certain spatial range. The diameter of the local
range for a given voxel should be less than 5 mm considering
the partial volume effect and the 5-mm-thick collimation. By
the acquisition protocol described above, each voxel was 1
mm thick with size in the – axial plane varying from 0.64
to 0.94 mm depending on the FOV. The chosen local volume
is depicted in Fig. 1. Its diameter is less than 4.6 mm in all
directions. The intensities of those 23 voxels in a local volume
form a twenty–three dimensional (23-D) local intensity vector.
The goal of the low-level processing is to classify the body
voxels based on their local intensity vectors.

Each dataset consists of millions of body voxels, where each
voxel has a 23-D local intensity vector. This requires inten-
sive computational effort to manipulate such a large quantity
of vectors. To reduce the computing burden, a feature anal-
ysis of the local vector series is necessary [3]. The principal

Fig. 1. Depiction of the local volume for a voxel.

component analysis (PCA) [1] was then applied to the local
vector series to determine the dimension of the feature vectors
and the associated orthogonal transformation matrix [i.e., the
Karhunen–Loeve (K–L) transformation matrix]. The PCA on
the datasets of the training samples showed that a reasonable
dimension of the feature vectors was 5, where the summation
of the first five principal components’ variances was more than
92% of the total variance.

It is computationally costly to determine K–L matrix for each
dataset.AgeneralK–Lmatrixwasthendeterminedbythetraining
samples and used for segmenting all datasets acquired from the
same source, i.e., from the same scanner with the same imaging
protocol described previously. To provide evidence for using the
generalK–Lmatrixforalldatasetsacquiredfromthesamesource,
the Kolomogorve–Smirnov test was performed [16], which aims
to prove that all datasets from the same source could be regarded
asasampleset fromanidenticalprobabilitydistribution.Asupine
dataset was chosen from each of the training samples. The as-
sociated cumulative distribution function (CDF) was obtained
and denoted by , (some volunteers have
two supine scans acquired in two consecutive days). By utilizing
all datasets (both supine and prone) in the training samples, a
general CDF, denoted by , was also computed. This
was regarded as the estimation of the source CDF. Then, the
hypothesisH0: and areidenticaldistributionsmaybe
tested against hypothesis H1: and are not identical,
for . The differences of greatest magnitude

werelistedinTableII.
The table [17, Table VIII] gives the critical value with a

two-tail test at a nominal 1% significance level of 0.45. All
differences listed in Table II are less than 0.45 (the largest
sample size in[17, Table VIII] is 20, where the critical value
is associated to this sample size). Hence, we accept H0, i.e.,
all datasets can be regarded as coming from an identical
probability distribution. Therefore, the general K–L matrix
determined by the training samples can be applied to segment
all the datasets acquired using the same scanning protocol.

C. Vector Quantization Algorithm

For the low-level classification, the K–L transformation was
first applied to the local vector series. In the K–L domain, the
feature vectors were formed by the first five principal com-
ponents from the transformed vector series. Then, the feature
vectors were classified into several classes. There are several
approaches to classify the vectors [4]. In general, an automated
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TABLE II
THE GREATESTMAGNITUDES OF THEDIFFERENCEBETWEEN THESUBJECTS= CDF AND THE SOURCECDF

algorithm is desired, i.e., an unsupervised self-adaptive vector
quantization (VQ) algorithm is a candidate. A self-adaptive
on-line VQ algorithm was developed and is presented below.
Let , , be the feature vector series, where

is the number of feature vectors; denote the maximum
number of classes; and be a threshold for vector similarity.
The VQ algorithm generates a representative vectorfor each
class. Let be the number of feature vectors in theth class
after classification.

The algorithm is outlined as follows.

1) Set , , and ;
2) Obtain the class number and class

parameters , .
For

For
Calculate ;

;
If ( or )
Update the representative vector of

the th class:
; ;

Else Generate a new class
; ; ;

3) Label each feature vector to a class
according to the nearest neighbor rule
For

For
Calculate ;

;
Label voxel to the th class;

where is the Euclidean distance betweenand ,
and gives the integer which realizes the min-
imum value of .

The class number and the representative vector for each class
can be obtained in a single scan on all feature vectors. This re-
duces greatly the computing time as compared to iterative VQ
algorithms, e.g., the LBG algorithm [10]. The representative
vector of each class is an estimation of the mean vector of that
class. From the central limit theorem [2], the larger the number
in a class is, the more accurate the representative vector esti-
mates the mean vector of that class. For a colon dataset, there
are millions of body voxels. Hence, the representative vector is
a good estimation to the mean of that class [2].

Fig. 2. An example showing the intensity value change gradually from tissue
A to tissueB. The overlap area represents the partial volume region.

The algorithm is similar to an unsupervised clustering algo-
rithm. The number of classes and the representative vectors are
updated continuously when more vectors are included in the
calculation. From this point, the algorithm can be regarded as
a learning procedure. It depends only on two parameters:
the upper bound of possible classes andthe vector simi-
larity threshold. In abdominal CT images, there are roughly four
classes that can be perceived based on their intensity features:
1) air, 2) soft tissue, 3) muscle, and 4) bone or the enhanced
residual materials. The intensity values of these four classes in-
crease from the lowest to the highest. Due to partial volume ef-
fect, there exists an intensity slope between two spatially con-
tiguous tissue areas (see Fig. 2). The voxels in this slope-area
are called partial volume voxels. To mitigate the under or over
estimation of tissue boundary, it is reasonable to find the tissue
boundary within the slope-area rather than on the edge of the
slope-area. In other words, the partial volume area should be di-
vided into two subareas. The left partial volume class is called
partial volume from to and the right one is called partial
volume from to . The partial volume area from to is
labeled as tissue and the partial volume area from to is
labeled as tissue in this study. In the CT images, there are two
kinds of voxels within the colon lumen: 1) air and 2) enhanced
materials. Each kind has a partial volume overlap to area of soft
tissue/muscle. Assigning two partial volume classes to each of
the overlap areas results in four partial volume classes in total.
Therefore, the maximum class numberfor the classification
algorithm was set to eight in this study.is more crucial to the
classification than . If it is too large, only one class could be
obtained. If it is too small, redundant classes may occur. Ac-
cording to our numerical experiments,was set to the square
root of the maximum component variance of the feature vector
series. This allows the VQ algorithm to achieve the minimum
class number with the maximum variance. Since T is estimated
from the data, the algorithm is self-adaptive.

D. Extraction of the Colon Lumen

The results of the low-level classification were represented
as a labeled image with integer values. The colon lumen con-
sisted of four kinds of labeled voxels: 1) air, 2) partial volume
from air to soft tissue/muscle, 3) enhanced materials, and 4)
partial volume from enhanced materials to soft tissue/muscle.
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Fig. 3. A CT slice image and the delineated contour of colon lumen.

These four classes were denoted by 1, 2, 3, and 4, respectively.
By applying the inverse K–L transformation to the class repre-
sentative vectors, the intensities in the original image space for
each class were obtained. Classes 1 and 3 were easily segmented
since their intensities were the lowest and the highest, respec-
tively. Since class 1 includes voxels of lung and class 3 includes
voxels of bone and these voxels are not physically associated
with the colon lumen, we can use region-growing strategies to
remove the non colon-lumen voxels from classes 1 and 3. This
is the high-level processing.

We removed lung voxels first. The regions of lungs are two
contiguous 3-D volume on the left and right sides of the chest. If
FOV covers the entire colon, air voxels in the top slice must be
lung voxels. Two air voxels for both left and right lungs were
determined as seeds for growing out the entire lung volume
by using a region-growing algorithm. After removing the lung
volume, the remained voxels in class 1 were inside the colon
lumen. Given the air lumen, the partial volume voxels of class
2 from air to soft tissue/muscle were then determined because
they were contiguous to the air lumen in both geometry space
and intensity feature.

Assuming that bone is separated from colon lumen, the voxels
of enhanced materials were then determined from class 3 by a
seed in the lumen with the region-growing algorithm. If a voxel
belonged to class 3 and there existed at least one voxel of air
in the lumen which was 2.5 mm or less away from the given
voxel, it was a seed for growing out the volume of the enhanced
materials. The partial volume voxels of class 4 from enhanced
materials to the soft tissue/muscle were determined by finding
the class closest to the material class in both geometry space and
intensity feature. Given the four classes of voxels representing
the colon lumen, the last task was to label the boundary voxels
between air and enhanced materials in the image space. The en-
hanced material forms a basin-like volume with a flat surface
due to the gravitation [9]. This surface was the boundary be-
tween air and enhanced material, and was found by sending a

ray from an air voxel and examining whether the ray reaches an
enhanced voxel within 2 mm.

E. Evaluation Method

Optical colonoscopy is currently utilized as the gold stan-
dard for validating virtual colonoscopy methods for detecting
colonic polyps of 5 mm or larger in diameter. For the electronic
cleansing without physical bowel washing, the gold standard is
not applicable. Instead, we acquired both supine and prone scans
for each subject and furthermore repeated the scans on the next
day for the volunteers, aiming to measure the reproducibility,
repeatability and robustness on partial volume effect of the pre-
sented electronic cleansing technique. The results were subjec-
tively judged by an experienced radiologist. Four objective pa-
rameters were calculated from the results to indirectly measure
the performance. The first two were used to measure the seg-
mentation error created by partial volume effect. The other two
were used to demonstrate reproducibility (by the same dataset)
and repeatability (by both supine and prone scans of the same
subject) of the method. All these four parameters were calcu-
lated from the extracted colon lumen.

1) Average thickness of the partial volume layer (ATPV):
This is the average thickness in 3-D space of the partial
volume layer from both air and enhanced materials to soft
tissue/muscle. If this parameter is larger than 5 mm, then
polyps of 5 mm in diameter may not be accurately de-
tected.

2) Partial volume percentage (PVP): PVP (summation
of the volume of partial volume layer from air to soft
tissue/muscle and the volume of partial volume layer from
enhanced materials to soft tissue/muscle)/(the volume of
entire extracted colon lumen).

The volume was counted by the number of voxels in the
region. This parameter estimates the ratio of the partial
volume voxels to the entire colon lumen.

3) Mean intensities of the air lumen (AL) and the enhanced
materials (ERM) voxels. The intensity is in HU.

4) %, where is one
of the parameter defined previously for the supine dataset
and is one corresponding to the prone dataset acquired
from the same subject on the same day. The definition
applies to the two-day scans. A smaller value
reflects a better reproducibility or repeatability.

III. RESULTS AND DISCUSSION

For subjects 3, 4, and 6, only supine scan was acquired (Table
I). For subjects 1, 2, 5, and 7, both supine and prone scans were
acquired on two consecutive days. Subject 8 was scanned in the
supine position on two consecutive days. There was a total of
21 datasets, 13 in supine position and eight in prone position.
The 15 datasets in the training samples were used to determine
the size of the feature vectors and the general K–L matrix. It
took nearly 6 hours to generate the K–L matrix. This matrix
was then applied to segment all the 21 datasets. Fig. 3 shows a
CT slice image and the extracted lumen contour within the CT
image. Fig. 4 depicts the removed enhanced materials in 3-D.
Fig. 5(a) displays the outside view of the entire extracted colon
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Fig. 4. Demonstration of removal of enhanced material (arrows).

(a) (b)

Fig. 5. The overview of the entire colon lumen (a) and the inside view of a segment of colon lumen (b).

lumen and Fig. 5(b) shows the inside view of a colon segment.
These figures were generated from subject 8. The segmentation
of the colon lumen took less than 9 minutes on a SGI/Octane
desktop workstation with dual CPU’s of R10000, 250 MHz, and
890 MB RAM. No parallel implementation was utilized. Since
we did not utilize seeded region-growing technique to grow out
the lumen, our method was able to delineate all segments of the
entire colon lumen when collapses presented.

A. Subjective Evaluation

The radiologist examined the segmentation results and
was satisfied. The entire lumens from 13 datasets of subjects
2, 3, 4, 5, 6, and 8 were successfully delineated, where four
datasets showed colon collapses. The enhanced materials
were removed satisfactorily. Although some small artifacts

remained on the wall surface near the boundary between
air and enhanced material, these were smaller than 5 mm
and were not clinically significant. In one subject, at some
locations, the small bowel adjacent to the colon, appeared
“attached” to the colon lumen. For example, subject 1 did
not follow the diet instruction, eating a big breakfast on the
first day prior to CT scan, which resulted in the stomach and
small bowel filled with enhanced materials. The extracted
lumen included part of the stomach and several small bowel
segments. (In the second day after correcting the error, the
colon lumen was successfully extracted). For subject 7,
due to a 5-mm thickness collimation, some boundary areas
between the lungs and colon were not resolved, resulted in
connection of lungs and colon lumen. The algorithm could
still remove the enhanced materials and extracted the lumen
including part of the lungs. (A smaller slice collimation
in data acquisition is recommended). Excluding the two
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TABLE III
PARTIAL VOLUME ERRORESTIMATION

TABLE IV
REPEATABILITY TEST

datasets of subject 1 and four datasets of subject 7 from the
total 21 datasets, 15 lumens were successfully delineated
and were inspected using our developed virtual colonoscopy
system [7], [8]. The attached areas between colon and small
bowel, as well as between colon and lungs, were deleted
manually before navigating through the colon lumens. The
navigations through both supine and prone scans, as well as
the second day scans of each subject agreed each other, i.e.,
they agreed with the assumed gold standard that the young
volunteers have no polyps.

B. Objective Evaluation

The supine and prone datasets acquired on the same day from
subjects 1, 2, and 8, respectively, were used to compute the pa-
rameters for repeatability test and partial volume effect mea-
surement. The results are listed in Tables III and IV, where S#
means subject #. The reproducibility test from the same dataset
was excellent, because of the fully automated process.

C. Discussion

If the bowel preparation instruction was followed, as most
subjects did, the segmentation results were satisfactory. The en-
hanced colonic materials were removed successfully except for
some small artifacts near the area where air, colon wall, and en-
hanced material connected. These artifacts form a small artifi-
cial horizontal ring on the colon wall surface that can be easily
distinguished from the colonic folds. Nevertheless, if a polyp
smaller than 5 mm is located on the ring, it could potentially
be missed in the virtual colonoscopy examination. Further re-
search is needed to minimize these artifacts for detecting smaller
polyps. If a segment of small bowel touches the colon and is
filled with the enhanced materials, this segment may be delin-
eated with a higher probability as the colon lumen. This can be
avoided by not eating any food/drink in the morning prior to CT
scan. Another possible solution is to use an interactive display
tool to manually correct the touched segment. The attachment
of the lungs to colon lumen can be avoided with a higher axial

resolution. This may be achieved by a multidetector ring CT
system.

In our algorithm, the colon lumen is delineated by removing
the volume which is not associated with the colon lumen, rather
than finding some seeds of the colon lumen to grow out the
entire lumen. This ensures that the entire colon lumen could be
delineated even if there are collapsed segments. This is a very
attractive advantage considering that the colon collapse happens
frequently.

The partial volume effect was considered in our algorithm.
The average partial volume layer shown in Table III is 2.57 mm
or less in thickness. This ensures that polyps of 5 mm or larger in
diameter cannot be affected by the partial volume effect within
the extracted colon lumen. However, some of the flat polyps
could be missed.

All the parameter differences in Table IV are less than 8.3%
and most of them are less than 6.5%, demonstrating good re-
peatability of our method. This statement concurs with the sub-
jective evaluation.

D. Conclusion

Our two-stage segmentation method designed for the bowel
preparation using a low-residue diet with ingested colonic
contrast solutions was computational efficiency and showed
satisfactory performance. Since the training samples include
patient datasets, the segmentation method is applicable to both
cases with and without additional physical bowel cleansing.
Most importantly, the electronic colon cleansing technique
demonstrated the feasibility of performing virtual colonoscopy
without the need for pre-procedure physical bowel cleansing.

ACKNOWLEDGMENT

The authors greatly appreciate the valuable comments on K–S
test from Dr. S. Li.

REFERENCES

[1] C. Chatfield and A. J. Collins,Introduction to Multivariate Anal-
ysis. London, U.K.: Chapman & Hall, 1980.



1226 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 12, DECEMBER 2000

[2] W. Feller, An Introduction to Probability Theory and its Applications,
3rd ed. New York: Wiley, 1968.

[3] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd
ed. New York: Academic, 1990.

[4] A. Gersho and R. M. Gray,Vector Quantization and Signal Compres-
sion. Boston, MA: Kluwer, 1992.

[5] S. Geman and D. Geman, “Stochastic relaxiation, Gibbs distributions,
and the Bayesian restoration of images,”IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 6, pp. 721–741, 1984.

[6] A. Hara, C. Johnson, J. Reed, D. Ahlquist, H. Nelson, R. Ehman, C. Mc-
Collough, and D. Ilstrup, “Detection of Colorectal Polyps by CT Colog-
raphy: Feasibility of a novel technique,”Gastroenterology, vol. 110, pp.
284–290, 1996.

[7] L. Hong, A. Kaufman, Y.-C. Wei, A. Viswambharan, M. Wax, and Z.
Liang, “3-D virtual colonoscopy,” inProc. Biomedical Visualization, M.
Loew and N. Gershon, Eds., Atlanta, GA, 1995, pp. 26–33.

[8] L. Hong, Z. Liang, A. Viswambharan, A. Kaufman, and M. Wax, “Re-
construction and visualization of 3-D models of colonic surface,”IEEE
Trans. Nucl. Sci., vol. 44, pp. 1297–1302, 1997.

[9] Z. Liang, F. Yang, M. Wax, J. Li, J. You, A. Kaufman, L. Hong, H. Li, and
A. Viswambharan, “Inclusion of a priori information in segmentation of
colon lumen for 3-D virtual colonoscapy,” inConf. Rec. IEEE NSS-MIC,
Albuquerque, NM, Nov. 1997.

[10] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
designed,”IEEE Trans. Commun., vol. 28, pp. 84–95, 1980.

[11] E. McFarland, J. Brink, J. Loh, G. Wang, V. Argiro, D. Balfe, J. Heiken,
and M. Vannier, “Visualization of colorectal polyps with spiral CT
colography: Evaluation of processing parameters with perspective
volume rendering,”Radiology, vol. 205, pp. 701–707, 1997.

[12] T. N. Papps, “An adaptive clustering algorithm for image segmentation,”
IEEE Trans. Signal Processing, vol. 40, pp. 901–914, 1992.

[13] T. Parkins, “Computer lets doctors fly through the virtual colon,”JNCI,
vol. 86, pp. 1046–1047, 1994.

[14] G. Rubin, C. Beaulieu, V. Argiro, H. Ringl, A. Norbash, J. Feller, M.
Dake, R. Jeffrey, and S. Napel, “Perspective volume rendering of CT
and MR images: Applications for endoscopic imaging,”Radiology, vol.
199, pp. 321–330, 1996.

[15] B. Simons, A. Morrison, R. Lev, and W. Verhoek-Oftendahl, “Relation-
ship of polyps to cancer of the large intestine,”J. National Cancer Inst.,
vol. 84, pp. 962–966, 1992.

[16] N. V. Smirnov, “On the estimation of discrepancy between empirical
curves of distribution for two independent samples” (in Russian),Bull.
Moscow Univ., vol. 2, pp. 3–16, 1939.

[17] P. Sprent, Applied Nonparampetric Statistical Methods, 2nd
ed. London, U.K.: Chapman & Hall, 1993.

[18] D. J. Vining, D. Gelfand, R. Bechtold, E. Scharling, E. F. Grishaw, and
R. Shifirin, “Technical feasibility of colon imaging with helical CT and
virtual reality,” in 1994 Ann. Meeting Amer. Roentgen Ray. Soc., New
Orleans, p. 104.

[19] J. Zhang, J. W. Modestino, and D. A. Langan, “Maximum-likelihood pa-
rameter estimation for unsupervised stochastic model-based image seg-
mentation,”IEEE Trans. Image Processing, vol. 3, pp. 404–420, 1994.

[20] “Cancer facts and figures,” Amer. Cancer Soc., Atlanta, GA, pt. 2, 1998.


