
Abstract—Image segmentation plays a major role in 
quantitative image analysis and computer aided detection 
(CAD) and diagnosis (CADx) for clinical applications.  
Conventional segmentation assigns a single label to each voxel, 
neglecting the partial volume (PV) effect.  This work presents 
an EM (Expectation Maximization) framework for 
segmentation of tissue mixture in each voxel.  Image data and 
tissue mixture models, EM algorithm for mixture 
quantification, prior model for regularization on the mixtures, 
and multi-spectral MR (magnetic resonance) data 
characterization are described in details.  Preliminary results 
from CT (computed tomography) and MR images are reported 
to demonstrate its potential  for clinical use. 

Keywords—Image segmentation, tissue mixture, maximum 
a posteriori (MAP) probability, EM algorithm 
 

I.  INTRODUCTION 

Image segmentation is a major component of image 
processing methodology, facilitating quantitative analysis 
and visualization of clinical features in medical images 
toward diagnosis , treatment/surgical planning and follow-up 
evaluation.  Conventional image segmentation assigns a 
single label to reflect a specific tissue type in each voxel and 
does not provide the percentage of each tissue type in that 
voxel.  This can result in a significant error in quantitative 
image analysis [1].  A logical solution is to determine each 
tissue percentage in each voxel.  Quantifying the tissue 
mixture in each voxel has been attempted in the recent years 
[2] with a noticeable success.  This work presents a 
framework for mixture segmentation based on the well-
established EM (Expectation Maximization) algorithm [3]. 
 

II.  METHODOLOGY 
 
A.  Image Data Model 

Given an acquired image }{ iY=Y , i = 1,2,…,I, over I 

voxels.  Each voxel value iY  is an observation of a random 

process around a mean iY  and variance 2
iσ , i.e., 

                                   iii nYY +=                                      (1) 

where in  reflects the associated noise with zero mean and 

variance of 2
iσ .  Assume that the noise follows a Gaussian 

distribution, then 
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where iθ  reflects the model parameters of mean and 

variance { iY , 2
iσ }.  Assume that all voxel values { iY } are 

statistically independent from each other, given the mean 
distribution { iY }, then we have 
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I
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where Θ  = { iθ }, i = 1,2,…, I. 

It is noted that given the mean iY  at voxel i, repeated 

observations at that voxel will render the variance 2
iσ .  

Therefore, the probability density function in equations (2) 
and (3) is defined for the given model parameters, which can 
be utilized to assign an appropriate label for each voxel, 
given the observed image { iY } [4].  However, the model 
parameters describe only the global properties of each voxel 
as a whole volume and do not consider its substructures  or 
mixture.  In many medical imaging applications, each voxel 
can have more than one tissue types due to the limited 
spatial resolution.  Ignoring the substructures will result in 
the well-known partial volume (PV) effect.  Consideration 
of the substructures is given below. 
 
B.  Tissue Mixture Model 

The acquired image { iY } reflects K tissue types 
distributing inside the body.  Within each voxel volume, 
there possibly are K tissue types, where each tissue type has 
a contribution to the observed voxel value iY  at voxel i.  Let 

ikX  be the contribution of tissue type k  to the observation 

iY .  It is clear that ikX  is also a random process around a 

mean ikX  and variance 2
ikσ , i.e., 

                                  ikikik nXX +=                                (4) 

where ikn  reflects the associated noise with zero mean and 

variance of 2
ikσ .  Assume that the noise ikn  also follows a 

Gaussian distribution, then 
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where ikθ  reflects the model parameters of mean and 

variance { ikX , 2
ikσ }.  Assume that all K tissue types have 

no correlation, then 
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K
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where iX̂  = { ikX } and iθ̂  = { ikθ }, k  = 1,2,…K, are 
vectors of length K for voxel i.  By the assumption that all 
voxel variables { iX̂ }, i = 1,2,…,I, are statistically 
independent, given the model parameters, then we have 
                        )|()|( ,

1, ikik
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where X = { iX̂ }, and parameter Θ  = { iθ̂ } has the same 
meanings as that as defined in equation (3).  The relation 

between { iθ } in equation (3) and { iθ̂ } in equation (6) can 

be derived from the relation of the observed datum iY  and 
its components from different tissue types in voxel i, i.e., 
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Let voxel i be partitioned into K compartments 
according to the tissue means of { ikX }, k = 1,2,…K , and 

ikZ  be the fraction of tissue type k  in voxel i, which satisfies 
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Furthermore, let kµ  and kν  be the mean and variance of 
tissue type k  fully filling a voxel.  Then we have 
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The tissue model parameters { kµ , kν } reflect the 
inherent properties of tissue type k  in the observed image 
{ iY }.  When a voxel is fully filled by tissue type k , where 

the mixture parameter ikZ  equals to 1, then the observed 

datum iY  equals to the tissue contribution ikX  at that voxel.  
This is expected because both the image data and tissue 
mixture models must be consistent.  The mixture parameters 
{ ikZ } completely specify the tissue distribution in the body 
and, therefore, are the target for quantitative image analysis. 

Estimation of the mixture parameters { ikZ } for more 

than one tissue types from an acquired image { iY } is a 
problem of missing data, as reflected by equation (8) as a 
mapping fro m more than one (right) to one (left) variables.  
For K = 2 (i.e., two tissue types), we have I measurements 
{ iY } to estimate I mixture parameters { ikZ } with the 
constraint of equation (10), in addition to the four tissue 
model parameters { kµ , kν }.  A well-established strategy for 
solving this missing data problem is the EM  algorithm. 
 
C.  EM Algorithm for Mixture Quantification 

By the EM terminology, iY  is an observable random 
variable and incomplete (in reflecting the underline true 
tissue information), while ikX  is an unobservable random 
variable and reflects the complete information for each 
underline tissue type.  The sampling densities for these two 
random variables are related by 
                        ∫
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where the integral is over all possible configurations of 
{ ikX } under the constraint of equation (8). 

The EM algorithm seeks the maximum likelihood (ML) 
solution for the model parameters Θ  (including the mixture 
and tissue model parameters) via the complete sampling 
density by interleaved Expectation and Maximization steps 
in an iterative manner. 

The E-step computes the conditional complete-sampling 
density, given the observed data Y  and the n-th iterated 

estimate of the mixture and tissue model parameters )(nΘ , 
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where the conditional means )(n
ikX  and )(2 )( n

ikX  for ikX  

and 2
ikX  respectively are given by 

)(         

 ],|[E

1
)()()()(

)()(

1
)()(

)()(

∑ =
−⋅+=

Θ=

∑ =

K

j
n

j
n

iji
Z

Zn
k

n
ik

n
iik

n
ik

ZYZ

YXX

K

j
n

j
n

ij

n
k

n
ik µµ

ν

ν       (14) 

∑
∑

=

≠⋅+=Θ=
K

j
n
j

n
ij

K

kj
n
j

n
ijn

k
n

ik
n

ik
n

iik
n

ik
Z

Z
ZXYXX

1
)()(

)()(

)()(2)()(2)(2 )(],|[E)(
ν

ν
ν (15) 

where 2)( )( n
ikX  is the square of the n-th iteration of )(n

ikX . 

The M-step determines the (n+1)-th iterated estimate, 
which maximizes the conditional complete-sampling density 
of equation (13).  For the mean parameter kµ , we have 
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which results in 
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i.e., the mean for tissue type k  is the summation of its 
contributions divided by the summation of its fractions over 
all voxels.  It concurs with our expectation.  For the variance 
parameter kν , we have 
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which results in 
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Its meanings can be seen for a special case of single tissue 
type, where 1=ikZ  and 2)()(2 )()( n

ik
n

ik XX = , the variance for 

that tissue type equals the summation of all voxel’s 
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variances divided by the number of all the voxels.  It 
concurs again with our expectation. 

For the mixture parameter ikZ , the constraint of 
equation (10) must be satisfied.  Therefore, the (n+1)-th 
iterated estimate )1( +n

ikZ  is  given by minimizing Q(.) subject 

to the constraint of equation (10). 
For cases of two tissue types, i.e., k  = 1 and 2, the E-

step of equation (13) becomes determination of 
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where 12 1 ii ZZ −=  was used.  Maximization of Q(.) with 

respect to xZi =1  is given by setting the partial 
differentiation to be zero, i.e., 
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Solving equation (21) for )1(
1

+= n
iZx , then we have 
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The ML-EM estimation of I+4 parameters from I 
measurements can be improved with consideration of valid 
a priori information for a maximum a posteriori (MAP-EM) 
estimation. 
 
D.  Prior Model for Mixture Regularization 

The EM model parameter estimation above can be 
regularized by imposing penalty on each tissue type (under 
the above assumption that all K tissue types are not 
correlated).  The penalty on each tissue type is imposed 
upon the mixture parameter { ikZ } in our case. 

By a Gibbs model on a Markov random field (MRF) 
framework, the penalty on the mixture parameter { ikZ } has 
the form of 
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where {
iikZ ε } are the neighbors of ikZ  surrounding voxel i, 

α  is a normalization constant and β  is an adjustable 
parameter controlling the degree of the penalty.  The 
potential function U(.) for a quadratic form can be written as 
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where irw  is a weighting factor for different orders of 
neighbors.  By including this penalty term into equation (13) 

for a penalized ML-EM or MAP-EM parameter estimation, 
we have 
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where εΘ  represents a neighborhood system and C(.) is a 
constant for maximizing function Q(.).  Maximizing Q(.) for 

kµ , kν , and ikZ  were described above. 

As discussed above, from an acquired single-channel 
image { iY }, accurate estimation of the mixture parameters 
for more than two tissue types is very challenging due to the 
severe missing of measurements.  Although drawing more 
samples from a region of similar densities iY  from the 
image can improve the estimation [5], multi-channel or -
spectral measurements provide sufficient information for 
unbiased statistically reliable estimate of mixtures in each 
voxel. 
 
E.  Multi-spectral Data Characterization 

In MR (magnetic resonance) imaging, a multi-spectral 
image series can be acquired in real time as T1,  T2, and 
proton density PD weighted.  For each image, the observed 
datum at voxel i is specified by equations (1) and (2), and 
for all the voxels, the observation is specified by equation 
(3).  The K tissue types in a single image are characterized 
by equations (4)-(11).  However, the fraction of tissue type k 
at voxel i for the three images is defined by the same 
mixture parameter ikZ , although the contributions of a 
tissue fraction to the three observed images have different 
means and variances.  Let τ  indicate a single image in the 
image series consisting of T1, T2, and PD weighted scans, the 
relations in equation (11) become 
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Since they are acquired at different times, the three 
images in the multi-spectral T1, T2, and PD series are 
statistically independent.  Translating this independence into 
the unobservable random variable X, equation (7) becomes 
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where τ  = 1,2,3 and indicates the T1, T2 and PD weighted 
images. 

The E-step of the EM algorithm for the multi-spectral 
images computes, from equation (13), the conditional 
density of 
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where the conditional means for )(n
ikX τ  and )(2 )( n

ikX τ  are 

given by 
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The M-step for estimate of the mean parameter is given 
by maximizing Q(.) with respect to τµk .  The result is  
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The estimate of the variance parameter 2
τσ ik  is given by 
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The M-step for estimate of the mixture parameter is given 
by maximizing Q(.) with respect to ikZ  with the constraint 
of equation (10).  For more than two tissue types, there may 
not have a simple formula for the (n+1)-th iterated solution.  
This complexity can be avoid by maximizing the probability 
of the observed data Y = { τiY }, instead of working on the 

probability of the unobserved data X = { τikX }, i.e., by 
minimizing the following linear functional with the 
constraint of equation (10) 
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where equations (2) and (9) have been used for the multi-
spectral data, and i∑  is the covariance matrix with 2

τσ ik  
being its diagonal elements. 

By the multi-spectral series of three images of T1, T2, 
and PD weighted, we can estimate reliably the mixture 
parameters up to 4 tissue types, which may be the white 
matter, gray matter, cerebral spinal fluid (CSF) and an 
abnormality class.  With more than 4 tissue types, we may 
need to acquire more images, such as diffusion image, in the 
series or include more restricted constraints . 
 

III.  RESULTS 

A digitized MR image was simulated, in which each 
voxel was classified as a unique tissue type.  The total 
number of classed was set up to 2 for simplicity.  The means 
of these two classes are 50 and 80, respectively.  A low-pass 
filter was applied to each class image.  The filtered class 
images were added together to mimic the PV effect.  White 
Gaussian noise was added to the smoothed image with PV 
effect, as shown in Figure 1(a).  We adopted a conventional 

MAP-MRF label segmentation method [4] and compared its 
performance with this presented method on the simulated 
image.  It is clearly seen that the label segmentation of 
Figure 1(b) misses  a noticeable details on the boundaries.  
Compared with the label segmentation, the mixture result 
represents  a more accurate anatomic structure, as shown in 
Figures 1(c ) and 1(e).  We also applied our method to 
experimental colon phantom CT (computed tomography) 
image.  Figure 2 compares the results of label and mixture 
segmentations. 

 

    
                 (a)                        (b)                       (c)                       (d) 

 
Figure 1. Simulation results: (a) simulated image, (b) label segmentation, 
(c) mixture segmentation for class 1, (d) mixture segmentation for class 2. 

 

    
                  (a)                   (b)                           (c)                         (d) 

 
Figure 2. Experimental study: (a) colon phantom CT image, (b) label 
segmentation, (c) mixture segmentation for air, (d) mixture segmentation 
for soft tissue. 
 

IV.  Conclusion 

The derivations are mathematically exact for the EM 
framework, based on the corresponding assumptions.  The 
preliminary results by both simulated and experimental 
image datasets  are very encouraging. 
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