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ABSTRACT 

 
This paper presents a model-based approach to correct for 
both partial volume effect and inhomogeneity in segmenting 
tissue mixtures inside each voxel of magnetic resonance 
images.  A maximum a posteriori probability (MAP) 
solution is sought.  In calculating the solution, the well-
known expectation maximization (EM) algorithm is 
employed.  The models of data likelihood and Markov 
priors for tissue mixture and bias field in establishing this 
MAP-EM framework are described in details.  A 
preliminary test is presented. 

 
1. INTRODUCTION 

 
Characterizing tissue structures and volumes from magnetic 
resonance (MR) images plays a very important role in 
clinical research and diagnosis.  A conventional approach 
usually labels each image voxel by a specific tissue type.  
This hard segmentation ignores partial volume (PV) effect 
and, therefore, losses both the detail of the tissue structure 
and the accuracy in quantifying the tissue volume.  An 
alternative approach has been attempted to find the 
probability of a specific tissue type inside each voxel [1-5].  
While this soft segmentation is theoretically attractive in 
dealing the PV effect, it usually either has a very 
complicated model of numerically intractable or an 
approximated model of less numerical accuracy.  A more 
specific model for PV segmentation was explored by Choi 
et al. [6] by dividing each voxel according to assumed tissue 
types.  Each tissue type inside a voxel was described by a 
random variable.  Choi et al. attempted to quantify directly 
the mean of each random variable for the corresponding 
tissue type in that voxel.  It has been a very challenging task 
to quantify directly the mean of a random variable because 
of the incompleteness of measurements.  Another more 

specific model for PV segmentation was explored by 
Leemput et al. [7] by dividing each voxel into sub-voxels 
and by the use of the EM (expectation-maximization) 
algorithm [8] to consider the data incompleteness.  All the 
sub-voxels were then labeled by a hard segmentation 
algorithm.  The ratio of the number of a specific tissue label 
over the total number of the sub-voxels in a voxel reflects 
the proportion of that tissue type in the voxel.  This discrete 
PV model becomes more accurate when each voxels is 
divided into a larger number of sub-voxels.  We have 
previously presented a continuous PV model [9] which 
quantifies the tissue mixtures in each voxel based on the 
EM algorithm.  This work extends that PV model to include 
inhomogeneity effect in MR images and presents an 
efficient method to compute the tissue mixtures in each 
voxel. 

 
2. METHOD 

 
2.1. Partial Volume Model with Inhomogeneity Effect 
 
Let the acquired MR image density distribution Y be 
represented by a column vector T

Nyyy ],...,,[ 21 , where iy  
is the observed density value at voxel i and N is the total 
number of voxels in the image.  (For multi-spectral MR 
images, iy  becomes a vector).  Assume the acquired image 
{ iy } contains K tissue types distributed inside the body.  
Within each voxel i, there possibly are K tissue types 
(although frequently one or two tissue types are present in a 
voxel), where each tissue type has a contribution to the 
observed density value iy  at that voxel.  Let tissue type k 

contributes ikx  to the observation iy  at voxel i, then we 
have: 
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Assume the unobservable variable ikx  follows a 
Gaussian distribution with mean ikμ  and variance 2

kσ .  If 

voxel i is fully filled by tissue type k, then ikx  becomes 
observable variable, i.e., iy  in this case, with Gaussian 
probability distribution characterized by tissue parameters 
( kμ  and 2

kσ ).  If voxel i is partially filled by tissue type k 
and let ikω  be the fraction of tissue type k inside that voxel, 
then we have: 
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From equation (1), the observed image density value at 
voxel i is expressed as i

K
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, where 

iε  is a Gaussian noise associated with the observation iy  
at voxel i with its mean being zero and variance of 
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22 σωσσ .  Notation iρ  reflects 

the bias field or inhomogeneity effect at voxel i which is a 
result of non-uniform RF field across the body and tissue 
response to the local magnetic field [10, 11].  The 
probability distribution of sampling { iy }, given the model 

parameters { ikω , iρ , 2, kk σμ }, assuming that { iy } are 
statistically dependent from each other, is: 
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where ω  represents tissue mixture vector T

N ],...,,[ 21 ωωω  

with T
iKiii ],...,,[ 21 ωωωω = , and the tissue model 

parameters are T
K ],...,,[ 21 μμμμ =  and 

T
K ],...,,[ 22

2
2
1

2 σσσσ = .  The probability distribution of 

sampling { ikx }, given the tissue model parameters 

{ ikω , iρ , 2, kk σμ }, is: 
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where X represents vector T

Nxxx ],...,,[ 21  with 
T

iKiii xxxx ],...,,[ 21 = .  Equations (3) and (4) describe 
the same continuous PV model of equation (2) in two 
different spaces under the connection of equation (1).  In the 
space of observable data { iy }, determining the model 

parameters from incomplete data { iy } via equation (3) can 
be very complicated [5].  In the space of unobservable 
complete data { ikx }, the well-known EM algorithm [8] is 
readily available to determine the model parameters via 
equation (4) by conditional expectation under the condition 
of equation (1).  This will be described in detail in Section 
2.2 below. 

The task of determining the model parameters { ikω , 

iρ , 2, kk σμ } given the acquired image data { iy } is 
specified by a posteriori probability which requires 
specification on the a priori distribution of { ikω } and 
{ iρ }. 
 
2.1.1. A Priori Model on the Mixture Parameters { ikω } 
 
In image processing applications, a Markov random field 
(MRF) prior or regularization is usually used for a 
maximum a posteriori probability (MAP) solution, where 
the MRF prior has the following form: 
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where iN  denotes the neighborhood of voxel i, β  is a 
parameter controlling the degree of the penalty on mixtures 
{ ikω }, ijα  is a scale factor which depends on the order of 

the neighbors, and Z is the normalization factor for the MRF 
model.  In this study, only the first-order neighborhood 
system is considered and ijα  is the same for the six first-

order neighbors if the image has a uniform spatial resolution 
in three dimensions.  When the axial resolution is twice 
lower than the transverse resolution, then ijα  is twice 

smaller for the two neighbors in the axial direction than the 
four neighbors in transverse plan. 
 
2.1.2. A Priori Model on the Bias Field Parameters { iρ } 
 
A similar MRF prior can be specified for { iρ } as [12]: 
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 (6) 
where R equals 2 for two-dimensional (2D) slice images and 
3 for 3D volume images.  Notation D is the standard 
forward finite difference operator along the corresponding 
directions.  Symbol * denotes the 1D discrete convolution 
operator.  The first-order regularization term (associated 
with 1γ ) penalizes a large variation in the bias field and the 
second-order regularization term (associated with 2γ ) 
penalizes the discontinuities in the bias field.  Both 



parameters 1γ  and 2γ  play a similar role as β  does, 
controlling the degree of smoothness of the bias field. 

2.2. MAP-EM Algorithm for Parameter Estimation 
 
Including the MRF priors (5) and (6) into equation (4) for 
the posteriori cost function and performing the E-step or the 
conditional expectation of the EM algorithm after an 
operation of log on the cost function, we have: 
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where the conditional expectations for ikx  and 2

ikx  are 
given by: 
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 (9) 
The maximization or the M-step of the EM algorithm 

determines the (n+1)-th iterated estimate, which maximizes 
the conditional expectation of equation (7) respect to the 
corresponding parameter.  For parameters { kμ }, we have 
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For parameters { 2
kσ }, we obtain: 
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For the mixture { ikω }, when only two tissue types are 

present in a voxel, i.e., 12 1 ii ωω −= , we have: 
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where 22
kikik σωσ =  and )(2

2
)(2

14 n
i

n
i σβσφ = .  When three 

tissue types are present in a voxel, the projection strategy of 
[6] is adapted to determine the mixtures by: 
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In a similar manner, we can determine four and more tissue 
types in a voxel. 

For the bias field parameter { iρ }, we have: 
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Solving equation (14) for { iρ } can be performed by the 
Jacobi iterative scheme [12]. 

 
3. RESULTS 

 
A set of brain MR images (i.e., Figure 1(a) T1- and Figure 
1(b) T2-weighted scans) was used to test the above 
presented method.  For reference, a hard segmentation using 
method of [1] is shown by Figure 1(c).  Other pictures are 
the segmented tissue mixture images of white matter-Figure 



1(d), gray matter-Figure 1(e) and cerebrospinal fluid-Figure 
1(f).  Figure 1(g) is the estimated result of the bias field. 

   
(a)                    (b)                  (c) 

    
(d)                   (e)                   (f)                    (g) 

Figure 1:  Tested results from a set of images of (a) T1 - and (b) T2 
- weighted scans.  Hard segmentation (c) is shown as a reference 
for comparison purpose.  Pictures (d), (e) and (f) are the segmented 
white matter, gray matter, and cerebrospinal fluid tissue mixture 
distributions, respectively.  Picture (g) is the estimated bias field. 
 

4. DISCUSSION 
 
Modeling the tissue mixtures in a continuous space in terms 
of unobservable variables, via the EM algorithm, is a new 
attempt of this work, compared to the previous research in 
the field.  The statistical distribution of the unobservable 
variables is consistent with that of the observable data, i.e., 
a Gaussian distribution, which has been widely accepted in 
segmentation of MR images.  The conditional expectation 
of the unobservable variables given the observed image data 
is very useful for estimation of the tissue mixture and model 
parameters from incomplete data.  This conditional 
expectation is especially useful when the number of the 
underline tissue types in a voxel is small, such as less than 
five.  In such case, the conditional expectation, given the 
measured datum, can have a significant impact on the 
estimation of the parameters of these five variables.  At the 
maximization step of the EM algorithm, all the tissue 
mixture and model parameters are updated simultaneously 
under the conditional expectation.  This ensures a 
monotonic increase of the posteriori probability [8].  
Further optimization of the calculations in the maximization 
step is currently under progress.  The presented solution to 
the PV effect is theoretically attractive and its usefulness in 
practical applications needs more extensive investigation, 
especially by phantom and patient data evaluation. 
 

5. ACKNOWLEDGMENT 
 
This work was partly supported by NIH Grant #CA82402 of 
the National Cancer Institute.  Dr. H. Lu was supported by 
the National Nature Science Foundation of China under 
Grant 30470490. 
 

6. REFERENCES 
 
[1] Z. Liang, R. Jaszczak, and E. Coleman, “Parameter estimation 

of finite mixtures using the EM algorithm and information 
criteria with application to medical image processing”, IEEE 
Transactions on Nuclear Science, vol. 39, pp. 1126-1133, 1992. 

[2] S. Sanjay-Gopal and T. Hebert, “Bayesian pixel classification 
using spatially variant finite mixtures and the generalized EM 
algorithm”, IEEE Trans. Image Processing, vol. 7, pp. 1014-
1208, 1998. 

[3] Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR 
images through a hidden Markov random field model and the 
expectation-maximization algorithm,” IEEE Transactions on 
Medical Imaging, vol. 20, pp. 45-57, 2001. 

[4] L. Li, H. Lu, X. Li, W. Huang, A. Tudorica, C. Christodoulou, 
L. Krupp, and Z. Liang, “MRI volumetric analysis of multiple 
sclerosis: methodology and validation”, IEEE Trans. Nuclear 
Science, vol. 50, pp. 1686-1692, 2003. 

[5] K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris, “A 
spatially constrained mixture model for image segmentation”, 
IEEE Transactions on Neural Networks, vol. 16, pp. 494-498, 
2005. 

[6] H. S. Choi, D. R. Haynor, and Y. Kim, “Partial volume tissue 
classification of multichannel magnetic resonance images- A 
mixel model,” IEEE Trans. Medical Imaging, vol. 10, pp. 395-
407, 1991. 

[7] K. V. Leemput, F. Maes, D. Vandermeulen, and P. Suetens, “A 
unifying framework for partial volume segmentation of brain 
MR images,” IEEE Trans. Medical Imaging, vol. 22, pp. 105-
119, 2003. 

[8] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood 
from incomplete data via the EM algorithm”, J. R. Stat. Soc., 
vol. 39B, pp. 1-38, 1977. 

[9] Z. Liang, X. Li, D. Eremina, and L. Li, “An EM framework for 
segmentation of tissue mixtures from medical images”, 
International Conference of IEEE Engineering in Medicine and 
Biology Society, Cancun, Mexico, pp. 682-685, 2003. 

[10] M. Tincher, C. R. Meyer, R. Gupta abd D. M. Williams, 
“Polynomial modeling and reduction of RF body coil 
inhomogeneity in MRI”, IEEE Trans. Medical Imaging, vol. 12, 
pp. 361-365, 1993 

[11] R. Guillemaud and M. Brady, “Estimating the bias field of 
MR images”, IEEE Trans. Medical Imaging, vol. 16, pp. 238-
251, 1997. 

[12] X. Li, L. Li, H. Lu, and Z. Liang, “A partial volume 
segmentation of brain magnetic resonance images based on 
maximum a posteriori probability”, Medical Physics, vol. 32, 
pp. 2337-2345, 2005. 

 


