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Abstract 
Automatic segmentation of brain tissues from mul- 

tispectral magnetic resonance (MR) images (acquired as 
relaxation time T I ,  T2, and proton density PD weighted by 
selecting appropriate settings of TE and TR, the spin-echo 
delay time and repetition time of a pulse sequence) requires 
automating the following steps: (1) compensation for 
image-intensity variation of a same tissue type induced by 
radiofrequency inhomogeneity across field-of-view; (2) strip- 
ping away image pixels which represent skull and scalp; and 
(3) estimation of model parameters (or training samples) such 
as image-intensity mean and variance for each tissue type and 
correlation coefficients for that tissue type among the three 
spatially-registered images (acquired in a very short time 
period). This proposed automatic approach first strips away 
the pixels of skull and scalp. The stripping is performed by 
detecting radially the pixels of inner-skull margin from the T2 
weighted transaxial image and applying the detected margin 
to remove the pixels of skull and scalp in the T1 and Po 
weighted transaxial images as well. The approach then deter- 
mines the intensity-variation map within the margin from 
each stripped image and compensates for the variation by 
dividing that image by the determined map. Finally the 
approach estimates the model parameters by fitting the image 
data into a multivariate mixture. The fitting is performed by a 
maximum-likelihood estimator. The above three steps have 
been successfully implemented by a computer. The 
automatic approach was tested by a set of three MR images 
acquired by a 1.5 Tesla whole body scanner from a head. The 
removal of skull and scalp was very satisfactory. The com- 
pensation for the intensity variation improved significantly 
the estimation of model parameters. 

I. INTRODUCTION 
Segmentation of brain tissues from neurological mag- 

netic resonance (MR) images is a necessary and non-trivial 
procedure for (1) volume measurement, (2) three dimensional 
display, and (3) feature analysis. These three techniques have 
clinical applications in diagnosis of disorders, such as 
Alzheimer's disease, epilepsy, atrophy, schizophrenia, and 
multiple sclerosis [4.8-101. One of the major advantages in 
using MR images over computed tomography (CT) data 
which has been attempted previously [6,17] for brain-tissue 
segmentation, is the visually differentiable of gray and white 
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matters, in addition to low radiation and multispectral charac- 
teristics of relaxation time T I ,  T2, and proton density Po 
information [16,19]. An automatic procedure is clinically 
demanded for consistency of data analysis and reduction of 
processing time. 

Great research efibrt has recently been devoted to 
develop automatic approaches for the tissue segmentation, as 
reported in the review articles [2,7]. We have previously stu- 
died a statistical automatic approach for estimation of model 
parameters (such as pixel mean, variance, and correlation 
coefficient) for each tissue type [11,12] and segmentation of 
tissue types on an image array [13-151. In this work, that 
study is extended to investigate the automation of (a) correc- 
tion for radiofrequency (RF) inhomogeneity across field-of- 
view (FOV) [1,3,5,16,18] and (b) removal of skull and scalp 
prior to segmenting the brain tissues. That study is further 
extended to investigate the gain in parameter estimation by 
the correction of the R F  inhomogeneity. 

11. METHODS 
The proposed automatic approach first strips away pix- 

els of skull and scalp in acquired images and then compen- 
sates for intensity variation of a same tissue type induced by 
the RF inhomogeneity for each image. 

A. Stripping away Pixels of Skull and Scalp 
The stripping away the pixels of skull and scalp in 

acquired images is performed by: (1) sampling 256 radii, 
each consisting of 128 pixels, from the center of the T2 
weighted transaxial image (see the middle of Fig.l), and lay- 
ing them in rows to form a new radial image (see the left of 
Fig.2), where a bilinear interpolation in two dimensions is 
used; (2) identifying the pixel of skinlair boundary on each 
row from right to left (on the radial image) by threshold of 
pixel value greater than 100 (air background); (3) advancing 
30 pixels left in that row from the skidair boundary and then 
searching from left to right for the pixel of inner-skull margin 
which is less than 65% of a running average of the previous 
ten pixels in that row; (4) smoothing the determined radial 
inner-skull margin (see the middle of Fig.2); (5 )  converting 
the smoothed radial inner-skull margin back to the rectangu- 
lar coordinates of the original image (see the right of Fig.2); 
and (6) removing the pixels of skull and scalp outside the 
inner-skull margin in the acquired T 1 ,  T2,  and PD weighted 
images (see Fig.3). 



B.  Correcting for RF Inhomogeneity 
The correcting for the RF inhomogeneity is performed 

by first computing the map of the intensity variation across 
the FOV for each stripped image of Fig.3 and then dividing 
that image by the computed map. 

The intensity-variation map is computed by: (1) calcu- 
lating four radial averages along the positive and negative 
directions of the central row and column on each image of 
Fig.3; (2) differencing the two averages in that row and 
column, respectively; (3) determining the "intensity- 
invariant" direction by that row (or column) which has a 
smaller average difference, i.e., the direction with smaller 
difference of averages has less intensity variation, as com- 
pared to the other direction with larger difference of averages; 
(4) setting a minunuirdmaximurn range for each row (or 
column) in the intensity-invariant direction by 0.8 and 1.2 
tunes of the average along that row (or column), where the 
computed average along the direction with less intensity vari- 
ation is expected to be more reliable than that computed 
along the other direction; ( 5 )  truncating the pixel values in 
that row (or column) into that range; and (6) smoothing the 
truncated image by a 9 x 9 window five to ten times to obtain 
the map which is expected to v<uy slowly across the FOV (see 
Fig.4); in the smoothing, when a part of the window is outside 
the determined margin, this part will be ignored in calculating 
the average for the pixel at the window center which is lim- 
ited inside the margin. 

The computed intensity-variation maps of Fig.4 are 
scaled by dividing their maximal values, respectively, before 
being used to compensate for the variation. 

The gain in estimation of model parameters by correct- 
ing for the RF inhomogeneity is studied by first applying the 
automatic estimation approach [I 1,121 to both the original 
images of Fig.3 and the corrected images of Fig.5, respec- 
tively, and then comparing the results. 

C .  Estimating Model Parameters 
The automatic estimation approach fits the three-image 

data into a multivariate mixture for the model parameters: (1) 
the number of components in the mixture determines the 
number of tissue types; and (2) each component is a mul- 
tivariate nonnal function which characterizes a tissue type by 
its three pixel me<ans, three variances, and three correlation 
coefficients <among the three spatially registered images 
(which are acquired in a very short time period). The three 
variances are the diagonal elements of the covariance matrix 
of the multivariant function. The three correlation 
coefficients make up the three off-central elements. The 
covariance matrix is symmetrical and positive definite. 

These model parameters in the mixture are estimated 
by maximum likelihood (ML) combining with an iterative 
expectation-inax~nization (EM) algorithm [11,12]. The 
number of tissue types is determined by an information cri- 
terion which is based on a Bayesian inference [11,12]. 

The above three steps of removal of skull and scalp, 
correction of RF inhomogeneity and estimation of model 
parameters are implemented automatically by a computer. 
Thereafter, segmentation of the brain tissues is straightfor- 
ward [13]. As an example, a ML segmentation is employed 
to investigate the gain by the correction of RF inhomo- 
geneity. 

111. RESULTS 
A set of three images was acquired by a 1.5 Tesla GE 

whole body scanner from a head and used to test the above 
described automatic approach. Figure 1 shows a selected 
slice each from the acquired images, respectively. The slice 
is 5 mm thick. The space between slices is 1 mm. The FOV 
is 20 an over a 256 x 256 image array. The raw data were 
sampled by 192 phase lines with 256 points on each line. A 
spin-echo pulse sequence was used. On'the left is the T I  
weighted image with TE/TR = 18/80 in units of msec (TE: 
spin-echo delay time, TR: repetition time of a pulse 
sequence). In the middle is the Tz weighted image with 
T E / ~ "  = 95/4000. And on the right is the Po weighted image 
with T~fl '  = 19/2500. 

The detection of the inner-skull margin is described by 
Fig.2. On the left is the radial image sampled from the T2 
weighted image. In the second left is the first-order 
differentiation of the radial image along the horizontal direc- 
tion. It is easy to see that the cerebrospinal fluid (CSF) space 
causes difficulty for detection of the margin when search 
starts from the beginning to the right. Attempt has been made 
to avoid the difficulty by starting the search after the CSF 
space on the radial image 1161. The attempt does not com- 
pletely overcome the difficulty because the CSF space and the 
inner-skull margin vary significantly from case to case on the 
sampled radial images. We proposed an alternative technique 
to avoid the difficulty as described above. The technique first 
searches for the skidair boundary starting from right to left. 
Since the skin and air have a huge contrast, their boundary 
can be easily detected. Then the technique considers the fact 
that the inner-skull margin has a relatively fixed distance 
from the skidair boundary on the radial image. So the pro- 
posed technique identifies the margin from left to right at 
those starting points (on the rows of the radial image) which 
have a fixed distance from their detected skidair boundary 
and therefore avoid the difficulty completely. In the middle 
of Fig2 are the detected inner-skull margin and skidair 
boundary. 

Up to this point, the advantage of using the radial 
image for detection of the inner-skull margin is clearly seen. 
The detected margin is one dimensional and can be smoothed 
easily, as shown in the second right of Fig.2. On the right of 
that figure are the inner-skull margin and skidair boundary 
converted back from the radial representation to the original 
rectangul,u coordinates, 

Figure 3 shows the acquired images of Fig.1 after the 
skull and scalp have been removed. The performance of the 
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automatic removal of the skull and scalp is very satisfactory. 
Figure 4 represents the computed intensity-variation 

maps from the stripped images of Fig.3, respectively. It is 
interesting to see that the maps of T I ,  Tz, and PD weighted 
images are significantly different, in contrast to our expecta- 
tion. We expect that the maps would be similar because their 
images were acquired by the same scanner in a very short 
time period. This experiment indicates that the correction for 
the RF inhomogeneity should be performed for each image, 
respectively, and the intensity-variation map should be deter- 
mined from that image to be corrected by the map. 

The intensity-variation maps of Fig4 were scaled by 
dividing the maps by their maximal values, respectively, 
before being used to correct for the RF inhomogeneity. The 
corrected images are shown in FigS. These images were 
obtained by dividing the original images of Fig.3 by their 
scaled maps of Fig.4, respectively. The uniformity of image 
intensities of a same tissue type is significantly improved 
across the FOV. This is especially noticeable in the corrected 
TI aid PD weighted images. Figure 6 m'akes a clear contrast 
between the corrected images and the original images by 
showing their intensity profiles of one-pixel width drawn 
vertically along a line just outside the left ventricle. The dot- 
ted lines represent the profiles of the original images, respec- 
tively. The solid lines are the profiles of the corrected 
images. And the broken lines are the profiles of the 
intensity-variation maps. 

Figures 7 and 8 contrast the ML segmentation between 
the original images of Fig.3 and the corrected images of 
Fig.5. The gain by the correction of RF inhomogeneity is 
clearly seen. In the segmentation from the original images, 
the gray and white matter are not distinguishable and are a 
mixture of two parts solely due to the RF inhomogeneity. 
The CSF space was successfully segmented because its strong 
signal in the T2 weighted image is not distorted much by the 
small RF inhomogeneity in that image and its weak signal in 
the TI and Po weighted images has small variation even if 
the RF inhomogeneity there is severe. The CSF, gray and 
white matter all were successfully segmented after the correc- 
tion of RF inhomogeneity. 

IV. CONCLUSIONS 
An automatic approach has been described which aims 

to facilitate the segmentation of brain tissues from multispec- 
tral MR images. The images can be either acquired as TI, T2,  
and PD weighted by selecting appropriate TE and TR settings, 
or computed as T I ,  Tz, and Po intrinsic parameters from 
acquired images [14]. The approach first strips away the skull 
and scalp by detecting the inner-skull margin using the T2 
weighted transaxial image. The approach then compensates 
for the intensity variation of a same tissue type across the 
FOV induced by the RF inhomogeneity. Finally the approach 
estimates the model parrmeters for the brain tissues using the 
corrected image data. These three automatic steps provide a 
basis for the automatic segmentation of the tissues on the 

image array (or patient space), as described in our previous 
work (151, as well as others [2,7]. The removal of skull and 
scalp is very satisfactory. The correction of RF inhomo- 
geneity improves significantly the tissue segmentation. The 
correction is very necessary for quantitative volume analysis 
as demanded in clinical applications [4,8-lo]. It is highly 
recommended to compute the intensity-variation map for 
each individual image, respectively, for the correction of RF 
inhomogeneity . 
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Fig.1: A set of T I  (left, T g f l ~  = lS/SOO). T2 (middle, 
T E ~ R  = 95/4000). and PO (right, T E ~ ~ R  = 19/2500) weighted tran- 
saxial brain images. 

Fig.2 The radial image sampled from the T2 weighted image (left), 
its first-order differentiation along horizontal axis (second left), the 
detected inner-sku11 margin and skidair boundary from the radial 
image (middle), the smoothed inner-skull margin (second right), and 
the inner-skull margin and skinlair boundary represented in the rec- 
tangular coordinates (right). 

Fig.3: The acquired images of Fig.1 after stripping away the skull 
and scalp. 

Fig.4: The computed intensity-variation maps of a same tissue type 
across the FOV induced by the RF inhomogeneity from the stripped 
images of Fig.3. 

Fig.5: The acquired images of Fig.3 after correclion of the RF inho- 
mogcncity. 

~ = 4 - + 7 l e 1 = 4 ~ *  W - d n w T  W-dm-31. 

Fig.6: The intensity profiles drawn vertically along a line near the 
left ventricle from the original images of Fig3 (dotted lines), the 
corrected images of Pig.5 (solid lines), and the maps of Fig.4 (bro- 
ken lines). 

Fig.7: The segmented mixture of gray and white matter (left and 
middle) and CSF space (right) from the original images of Fig.3. 

Fig.8: The segmented gray (left) and white (middle) matter and 
CSF space (right) from the corrected images of Fig.5. 
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