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ABSTRACT 

 
Computed tomography-based virtual colonoscopy or CT colonography (CTC) currently utilizes oral contrast solution to 
differentiate the colonic fluid and possibly residual stool from the colon wall.  The enhanced image density of the tagged 
colonic materials causes a significant partial volume (PV) effect into the colon wall as well as the lumen space (air or 
CO2).  The PV effect into the colon wall can “bury” polyps of small size by increasing their image densities to a 
noticeable level, resulting in false negatives.  It can also create false positives when PV effect goes into the lumen space.  
Modeling the PV effect for mixture-based image segmentation has been a research topic for many years.  This paper 
presents the practical implementation of our newly developed statistical image segmentation framework, which utilizes 
the EM (expectation-maximization) algorithm to estimate (1) tissue fractions in each image voxel and (2) statistical 
model parameters of the image under the principle of maximum a posteriori probability (MAP).  This partial-volume 
expectation-maximization (PV-EM) mixture-based MAP image segmentation pipeline was tested on 52 CTC datasets 
downloaded from the website of the VC Screening Resource Center, with each dataset consisting of two scans of supine 
and prone positions, resulting in 104 CT volume images.  The cleansed lumens by the automated PV-EM image 
segmentation algorithm were visualized with comparison to our previous work, with the gain achieved mainly in the 
following three aspects: (1) the tissue fraction information of those voxels with PV effect have been well preserved, (2) 
the problem of incomplete cleansing of tagged materials in our previous work has been mitigated, and (3) the 
interference caused by small bowel was significantly released. 
 
Keywords:  PV effect, tissue mixture, EM algorithm, parameter estimation, MAP image segmentation, electronic colon 

cleansing. 
 

1. INTRODUCTION 
 
Virtual colonoscopy (VC) 1,2 is known to be an emerging method utilizing advanced medical imaging and computer 
technologies to mimic the fiber optic colonoscopy (OC) navigation procedue, looking for polyps via fly-through in a 
virtual colon model which is constructed from patient abdominal images.  Compared to OC, VC has demonstrated the 
potential to become a mass screening modality in terms of safety, cost and patient compliance 3.  By the use of oral 
contrast to tag the colonic materials, the residue stool and fluid have an enhanced image density compared to the 
surrounding colon/polyp tissues such that electronic colon cleansing (ECC) becomes a new technology 4 and has been 
integrated into a commercial VC system to identify the enhanced colonic materials and restore a “cleansed” colon model 
for both VC navigation 3,5,6 and following-up computer-aided detection (CAD) analysis 7.  It has been demonstrated that 
ECC is able to provide a comparable performance as the routine OC in detecting clinically significant polyps of size 
greater than 8mm 8,9. 
 
Image segmentation plays an important role in the ECC new technology.  However, the traditional image segmentation 
of labeling each image voxel as a single tissue type ignores the partial volume (PV) effect and, therefore, losses the 
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details on the colon mucosa where most voxels contain more than one tissue types.  Ignoring the PV effect could be an 
essential factor of missing detection of small polyps.  Progress has been made by soft image segmentation, which seeks 
the probability of a tissue type in a voxel while retaining the tissue labels of the traditional hard segmentation 2,6.  
Directly modeling the tissue mixtures in each image voxel for an explicit solution of the PV effect has been a research 
interest for many years 10-13.  This paper presents the practical implementation details of an newly developed PV image 
segmentation pipeline 13,14, utilizing the expectation-maximization (EM) algorithm 15 to estimate simultaneously (1) 
tissue fractions in each image voxel and (2) statistical model parameters of the image data under the principle of 
maximuma posteriori probability (MAP).  In doing so, the PV effect is modeled in a continuous space and estimated 
directlyas the fraction of each tissue type in the original voxel.  Fifty-two CTC datasets downloaded from the website of 
the VC Screening Resource Center are utilized to evaluate the PV-EM image segmentation pipeline in a way that the 
obtained cleansed lumens are visualized with comparison to our previous work 5,6.  The gain achieved by the PV-EM 
image segmentation pipeline is mainly in the following three aspects: (1) the tissue fraction information of those voxels 
with PV effect have been well preserved, (2) the problem of incomplete cleansing of tagged material in our previous 
work 5,6 has been mitigated, and (3) the interference caused by small bowel and remaining bone is significantly released. 
 
The reminder of this paper is ogranized as follows.  Section II briefly introduces the PV-EM algorithm, and followed by 
Section III where more practical implementation detailes of our newly developed PV-EM image segmentation pipeline 
are fully described.  Section IV then validates our method using 52 VC datasets, highlighting the major contributions of 
our new method compared to our previous work.  Finally, Section V draws some conclusions. 
 

2. PARTIAL VOLUME-EXPECTATION MAXIMIZATION ALGORITHM 
 
In this section, the PV-EM algorithm is briefly introduced based on the assumption that the acquired CT image Y reflects 
the distribution of K tissue types inside the body.  In other words, there are K possible tissue types within each image 
voxel, where each tissue type has a contribution to the observed image density value iY  at voxel i. 

 
2.1 Image Data Model 

It is assumed that the acquired image Y is represented by a column vector into the form of },,1,{ IiYi K= where 

I denotes the total number of voxels in the image and each iY  is an observation of a random variable with mean  iY  and 

variance 2
iσ , i.e., 

iii nYY += .                                                                                       (1) 

If we further assume that noise Iini ,,1 , K= , is statistically mutually independent and follows a Gaussian distribution 

with zero mean and variance 2
iσ , then given all the mean and variance distribution },,1,{ IiY i K= and 

},,1,{ 2 Iii K=σ  respectively, the conditional probability distribution of the acquired image Y is described as follows 

∏ =
=

I

i iiiii YYpYp
1

22 ),|(}){},{|( σσY .                                                            (2) 

It should be noted that each voxel in many medical imaging applications can have more than one tissue types due to the 
limited spatial resolution such that ignorance of the substructures within each voxel will suffer from the well-known PV 
effect.  In what follows, a more detailed mixture model within each voxel would be briefly introduced as opposed to the 
global structures using model parameters }{ iY  and }{ 2

iσ  with Ii ,,1K=  as described by (1). 

 
2.2 Tissue Mixture Model 

There are probably K tissue types within each voxel },,1,{ IiY i K= , where the contribution of tissue type k to 

the observation of iY  is denoted by },,1;,,1,{ KkIiXik KK == .  It is obvious that ikX  is also a random variable around 

mean ikX  and variance 2
ikσ , i.e., 

ikikik nXX +=                                                                                   (3) 
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where the noise },,1 ;,,1 ,{ KkIinik KK ==  is statistically independent to each other and follows a Gaussian 

distribution with zero mean and variance 2
ikσ .  Following the same argument on the image data model, given the tissue 

mixture model parameters },,1;,,1,{ KkIiXik KK ==  and },,1;,,1,{ 2 KkIiik KK ==σ , we have 

∏ ∏= =
=

I

i

K

k ikikikikik XXpXp
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22 ),|(}){},{|( σσX .                                                  (4) 

As a result, the tissue mixture model within each voxel },,1,{ IiYi K=  by accounting for the contribution of each 

tissue type },,1;,,1,{ KkIiXik KK ==  is depicted as follows 
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More specifically, if ikZ  is assumed to be the contribution fraction of tissue type k in voxel iY  with 

10  ,1
1

≤≤=∑ = ik

K

k ik ZZ , also kµ  and kν  be the mean and variance of tissue type k fully filling in voxel iY , then we 

have the following relationship as well 
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In doing so, (2) can be rewritten as 
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The maximum likelihood (ML) solution on the Gaussian distribution },,1,{ IiYi K=  of (7) for fractions 

},,1 ;,,1 ,{ KkIiZ ik KK ==  can be computed, given the model parameters kµ  and kν  with Kk ,,1K= .  However, 

solving the optimization problem can be very complicated due to the fact that simultaneous estimation of both 
},,1 ;,,1 ,{ KkIiZ ik KK ==  and kµ  and kν  with Kk ,,1K=  is numerically intractable.  As a result, the EM 

algorithm is considered as an alternative but effective solution, with the mixture model as described by (5) being re-
interpreted as a many-to-one mapping problem of missing data. 
 
2.3 Priori Model for Mixture Regularization 

So far, all we discussed is based on maximum-likelihood expectation-maximization (ML-EM) framework, which is 
known to yield noisy segmentation as the iteration number increases 16.  As far as image segmentation is concerned, 
many literatures have evicted the strength of maximum a posteriori-expectation maximization (MAP-EM) or penalized 
ML (pML) algorithm by introducing a Markov random field (MRF) penalty term to define an a priori distribution for the 
tissue mixture fraction around its neighboring voxels, such that ML-EM becomes MAP-EM by the use of the Bayesian 
theory.  Based upon the priori knowledge of what each voxel’s neighboring voxels are mostly look like, the MAP-EM is 
capable to provide much more smooth parameter estimation for the tissue type mixture fraction ikZ  to achieve image 

segmentation, recovering those fraction information ikZ  on the boundary or region with significant PV effect. 

 
By a Gibbs model on the Markov random field (MRF) framework, the penalty on the tissue mixture parameter ikZ  has 

the following general form 

( ) )](exp[}{| 1

iikikiikik ZZUCZZP εε β −−×= −                                                          (8) 

where }{
iikZ ε  are the surrounding neighbor voxels of ikZ  in the neighboring system iε , C is a normalization constant 

and β  is an adjustable parameter controlling the degree of the penalty.  The exponential function U(.) can be written as 

a quadratic form like 
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where irw  is a weighing factor for different orders of neighbors.  As a result, our PV-EM algorithm for the MAP 

solution consists of the following two steps of the EM algorithm15 below. 
 
(1) E-step: the conditional expectation at the n-th iteration is calculated by 
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where parameter set Θ  represents the fractions { ikZ } and tissue parameters { kµ , kν }, and )( n
ikX  and )(2 )( n

ikX  are 

the conditional expectations of ikX  and 2
ikX  respectively 
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where )(2 )( n
ikX  is the square of the n-th iterated estimate of )(n

ikX . 

(2) M-step: the maximization of the conditional expectation determines the (n+1)-th iterated results for the fractions and 
model parameters.  For the mean parameter kµ , we have 

∑

∑
=+

i ik

i
n

ikn
k

Z

X )(
)1(µ .                                                                               (13) 

Similarly for the variance parameter 
kν , we have 
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For mixture of two tissue types in each voxel, the fractions { ikZ } can be estimated by 14 
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i ZZ  and 
kikik Z νσ =2 . 

 
3. IMPLEMENTATION DETAILS OF THE PV-EM ALGORITHM 

 
It has been demonstrated that our previous PV-EM pipeline is successful in segmenting the entire colon lumen from 
original CT image, cleansing the colon lumen and restoring the CT density values of the colon tissue in the enhanced 
mucosa layer 9,14.  However, there are still some implementation details worthy to be mentioned as follows. 

3.1 The full use of tissue fraction information ikZ  to maximally reduce the computational complexity while 
maintaining the consistency between two consecutive EM iterations 

A new strategy to update the tissue fraction ikZ  associate with tissue type k within voxel i is developed according to 

the following criterion: 
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where )(iN  denotes the second-order neighborhood system centered at voxel i and jw  is a scale factor reflecting the 

difference among different orders of the neighboring voxels.  By means of (16), the contributions made by different 
tissue types are sorted in a descending order, such that least-important tissue type can be ignored from the next PV-EM 
iteration.  As a result, re-labeling each voxel is able to indicate the actual number of tissues present in voxel i. 
 
The major advantage provided by (16) is due to the fact that the soft fraction information of ikZ  in voxel i is significantly 

preserved during each iterative step in the sense that ikZ  is smoothly changed depending upon its surrounding neighbors 

as the number of iterations increases, efficiently avoiding the sudden change of ikZ  from n-th to (n+1)-th iteration in our 

previous work.  On the other hand, the computational complexity due to the occurrence of more than two tissue types 
within one voxel can be released. 
 
3.2 The use of vector quantification to compensate for the ignorance of soft-tissue structures during the hard 

segmentation initialization step 

It has been demonstrated that the PV-EM algorithm is local maximum and hence the final convergence appears to be 
more sensitive to the initialization model parameter14.  Two kinds of parameters are needed to be initialized to start the 
PV-EM algorithm: the model parameters specified by { kµ , kν } for each tissue type and the tissue mixture fraction 

denoted by ikZ .  Experimental results 14 have also demonstrated that the iterative processes of the PV-EM algorithm is 

not sensitive to the initial model parameters in the sense that even when the initial means and variances { )0(
kµ , )0(

kν } were 

added by 10% more errors, the PV-EM algorithm still converged to the good results.  To the contrary, the PV-EM 
algorithm convergence appears to be more sensitive to the initial estimate of the tissue mixture fraction )0(

ikZ .  In what 

follows, this paper presents a vector quantification (VQ)-based initialization method, aiming to preserve the PV effect by 
taking into account the neighboring voxels. 
 
As an image compression algorithm, VQ has received considerable interest and been used in many applications such as 
image and voice compression and classification, statistic pattern recognition.  As its name implied, the use of VQ in CT 
images is limited since each voxel in CT images has only one value uniquely representing it.  Several modifications have 
been made to the explanation and reformation of CT images to fit into the framework of VQ.  For example, Chen et al. 5 
has proposed a novel method of grouping the intensities of those 23 voxels in a local volume to form a twenty-three 
dimensional (23-D) local intensity vector to achieve the classification of the body voxels based on the intensity similarity 
within certain spatial range 5.  As a result, each voxel is reinterpreted as a 23-D local intensity vector, such that the 
computational complexity is expected to be very high since each CT image consists of millions of body voxels.  To 
reduce the computing burden, principal component analysis (PCA) has been also applied to the local vector series to 
determine the dimension of the feature vectors.  Moreover, the results of PCA on the datasets of the training samples 
showed that a reasonable dimension of the feature vectors was 5, where the summation of the first five principle 
components’ variances was more than 92% of the total variance 5.  Different from Chen et al.’s work where VQ is 
implemented in a two-stage manner to segment the entire colon lumen, the idea of VQ is incorporated into our PV-EM 
pipeline under the assistance of thresholding hard segmentation.  It is expected to provide much more detailed 
information about the difference between submerged soft-tissue structure, tagged material, degraded tagged material, as 
well as the bone.  The VQ-based initialization method is briefly summarized into the following steps. 

(1) The whole boy image is firstly divided into four different classes, air (including lung), muscle, tissue and bone 
(including tagged material, submerged soft-tissue structure) through hard segmentation by the use of pre-defined 
thresholds. 

(2) For bone class only, each voxel belonging to this class is re-interpreted as a 23-D local intensity vector, followed by 
PCA transform through eigen-value decomposition, only using the first five principle components to uniquely 
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represent the original 23-D local intensity vector.  In other words, those voxels belonging to bone class have been 
translated into a 5-D local intensity vector with each dimension coming from a distinct principle component. 

(3) The VQ is then applied to these reformed bone class voxels, finding representative 5-D vectors for each sub-divided 
bone classes.  A practical issue then arises, which is how to determine the number of sub-divided bone classes.  In 
our study, we follow the same track by further dividing the bone class into 10 sub-classes through an unsupervised 
self-adaptive VQ algorithm 5.  Further experiments have demonstrated that the number of 10 is sufficient to fully 
describe the characteristics of the bone, tagged material, submerged soft-tissue structure and even the degraded 
tagged material whose intensity is much lower than the normal tagged material. 

If we initially label air class as 1, muscle class as 2, tissue class as 3, and the original bone class as 4, then the new label 
results obtained from VQ 10-class sub classification can be summarized by Table 1 as follows. 
 

Table 1:  label results derived from initial hard segmentation and followed by 10-class VQ classification 

 Before VQ After VQ 
AIR 1 1 

MUSCLE 2 2 
TISSUE 3 3 

Sub-class 1 5 
Sub-class 2 6 
Sub-class 3 7 
Sub-class 4 8 
Sub-class 5 9 
Sub-class 6 10 
Sub-class 7 11 
Sub-class 8 12 
Sub-class 9 13 

BONE 4 

Sub-class 10 14 

 
More comments are worthwhile to be mentioned.  Each voxels initially belonging to bone class is re-grouped into 10 
sub-classes by the VQ classification.  In doing so, the means of 10 sub-classes, denoted by 10,1, K=kmk , can be 

accordingly calculated and also sorted in an increasing order.  As a result, the new labels from 5-14 are capable of 
indicating what kind of material a bone-class voxel is mostly like to be.  In other words, if a bone-class voxel is relabeled 
as 5 after VQ, then it is more likely to be a submerged soft-tissue structure.  However, if it is relabeled as 14 instead, we 
would say it has high probability to be claimed as pure bone or pure tagged material.  As for the label between 5 and 14, 
it serves as an indicator to provide more details on which direction it tends to behave, i.e., the larger the label, the more 
likely to be like pure bone/tagged material, and the smaller the label, the more likely to behave like soft-tissue structure 
or even degraded tagged materials. 
 
Under the assistance of such detailed information within bone class, the initialization strategy can be modified in a way 
that the model parameters { )0(

kµ , )0(
kν } are still determined by hard segmentation since they have little effect on the 

convergence of the PV-EM algorithm, while for the tissue mixture fracture )0(
ikZ , the newly VQ-generated labels from 5-

14 are serving as indicators, re-assigning different weights reflecting different contribution made by the soft-tissue 
structure or the pure bone.  More specifically, the larger the label of tissue type k within voxel i, the more )0(

ikZ  and vice 

versa. 

3.3 The post-processing steps to remove the interference caused by small bowel, lung and bone 

Since colon is not the only gas-filled structure in the abdomen, there exists inevitable interference caused by small 
bowel, accordingly increasing the false positives especially when the folders inside the small bowel mimic.  As a 
complementary post-processing step to our PV-EM image segmentation pipeline, removing small bowel as well as other 
interfering structures such as the bone and lungs, becomes vital to the follow-up CAD to locate polyps.  A connected 
component-based small bowel removal method is summarized into the following steps. 
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(1) Morphological erosion operation is firstly employed to shrink the whole colon area, such that only those voxels 
without PV effect, i.e., mixing fractions ikZ for colon structure is 100%, are preserved for the next step. 

(2) Connected component analysis is applied to each pure colon voxel.  In doing so, the pure colon area is divided into 
several separate connected components with different sizes through 3-D region growing. 

(3) If we further assume that colon is connected as a whole and considered as the largest connected component in the 
abdomen, then the easiest way to remove other interference such as the small bowel is to select the largest connected 
component, while ignoring the remaining separate components.  However, this assumption is not valid through all 
the cases.  We found that almost in 30% abnormal cases, colon is blocked into several separate components as well.  
In order to mitigate this problem, choosing the several largest components turns out to be an alternative method.  
Through our comprehensive experiments, the number of components to be selected is no more than 3 in 99% cases. 

(4) After choosing the largest connected component for the normal case or 3 components for the abnormal cases, colon 
and small bowel can be successfully divided apart.  Recovering those voxels with PV effect through morphological 
dilation becomes the final step as a pair-wise operation to the erosion in the very first step.  The layers for dilation 
were empirically set to be 3-5 which covers the thickness of the mucosa layer. 

 
The connected component-based small bowel removal method outlined by steps (1)-(4) above works efficiently in 
removing interfering structures such as the small bowel, remaining bone and even stripe noise in the sense that almost 
90% small bowel can be removed without any loss of colon information.  Most importantly, the PV effect, which is 
derived from our proposed PV-EM image segmentation iterative algorithm are well preserved as a benefit to the follow-
up CAD detection. 
 

4. EXPERIMENTAL RESULTS 
 
This paper tabulates the preliminary evaluation of the improved PV-EM image segmentation pipeline above for mixture 
image segmentation and electronic colon cleansing by 52 CTC datasets, downloaded from the website of the VC 
Screening Resource Center consists.  Each of the 52 VC datasets consists of two CT scans, supine and prone views, both 
of which represented by a volume image of more than 300 slices of 512×512 array size. 
 
4.1 Convergence speed of the PV-EM algorithm 

In what follows, equation (17) defines the criterion of stopping rule for the PV-EM image segmentation algorithm as 
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where the maximum ratios of class mean difference between the (n+1)-th and the n-th iterations to the n-th class mean 

itself among all the four different tissue types is less than the threshold δ as specified by the user.  In this study, the 

threshold δ  was set to be 0.05.  Taking the dataset (named as the number 043 at the website of the VC Screening 
Resource Center) at prone position as an example to illustrate the converging speed of the PV-EM algorithm, Fig. 1 
shows the changing rate of mean values versus the iteration numbers. 
 
As shown in Fig.1, the PV-EM image segmentation algorithm usually takes 9 or 10 iterations to reach the optimum 

points as stopping rule defined by (17) if the threshold δ is set to be 0.05.  However in practice, we usually set the 
number of iterations to be 4, which is sufficient in terms of preserving PV effect.  In other words, after 4 iterations, the 
curve describing the converging speed of the PV-EM algorithm has already reflected an obvious descending tendency.  
In doing so, computational time can be dramatically reduced without any significant loss of PV information. 
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Figure 1:  The converging speed of PV-EM algorithm 

 
4.2 Capability of preserving the PV effect 

Compared to our previous soft-segmentation work6, the PV effect has been well preserved by our newly developed 
PV-EM image segmentation algorithm.  Instead of nearly hard segmentation, the PV-EM algorithm is capability to 
provide soft tissue mixture information to fully describe the PV effect.  As shown in Fig. 2, the mixing fraction ikZ  for 

colon structure is smoothly changing from 100% (corresponding to pure colon area) down to 0% covering a typical 
mucosa layer within 3-5 pixel thickness. 
 

     

     

Figure 2:  Comparison between our improved PV-EM pipeline and our previous soft-segmentation work in dealing with the 
PV-EM effect.  The pictures at the top row are the segmentation as well as the cleansed results from our improved pipeline 
and those results obtained by our previous work are shown in the bottom row. 

 
4.3 Capability of complete electronic cleansing 

Another advantage of our PV-EM image segmentation algorithm over our previous work 6 is in the capability of 
complete electronic cleansing.  Compared to our previous work 6 where there is some tagged material remaining in the 
cleansing results, burying some of the folders and increasing the false negative probability, our PV-EM image 
segmentation algorithm overcomes this problem by completely cleansing the tagged materials while leaving small colon 
folders untouched, see Fig.3. 
 
4.4 Capability of removing interferences caused by the small bowel and the remaining bone 

Figure 4 is also included here to illustrate the difference between our PV-EM image segmentation algorithm and our 
previous soft-segmentation work 6 in terms of the capability of removing interferences caused by the small bowel as well 
as the remaining bone.  As we mentioned earlier, successful removal of the small bowel and the remaining bone is able 
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to save much of the computational time required by the follow-up CAD polyp detection, while effectively reducing the 
false positive probability. 
 

     

     

Figure 3:  Comparison between our improved PV-EM pipeline and our previous soft-segmentation work in electronic colon 
cleansing.  The pictures at the top row are segmentation results from our improved pipeline and the results obtained by our 
previous work are shown in the bottom row. 

 

     

     

Figure 4.  Comparison between our improved PV-EM pipeline and our previous soft-segmentation work in removing the 
small bowel as well as the remaining bone.  The pictures at the top row are segmentation results from our improved pipeline 
and the results obtained by our previous work are shown in the bottom row. 

 
5. CONCLUSIONS 

 
Partial-volume image segmentation for directly quantifying the tissue mixture in each image voxel has been a more 
challenging task over the previous hard and soft image segmentations.  This paper provides an accurate PV image model 
based on the data Gaussian statistics with continuous mixture values 10 ≤≤ ikZ .  The parameter estimation by the EM 

algorithm is both theoretically attractive and practically useful.  It has the potential to mitigate the PV effect of positive 
contrast tagging in CTC application, and provides improved endoscopic view quality and quantitative CAD measure. 
 
 
 

Proc. of SPIE Vol. 6511  65110V-9



ACKNOWLEDGEMENT 
 
This work was supported in part by the NIH National Cancer Institute under Grant # CA082402 and Grant # CA110186.  
Dr. Lu was supported by the National Nature Science Foundation of China under Grant 30470490. 
 

REFERENCES 
 
[1] J. Reed and D. Johnson, “Automatic segmentation, tissue characterization, and rapid diagnosis enhancements to the CT 

colonoscopy analysis workstation”, Journal of Digital Imaging; 10: 70-73, 1997. 
[2] Z. Liang, D. Chen, B. Li, A. Kaufman, M. Wax, and A. Viswambharan, “On segmentation of colon lumen for virtual 

colonoscopy”, SPIE Medical Imaging; 3660: 270-278, 1999. 
[3] P. Pickhardt, R. Choi, I. Hwang, J. Butler, M. Puckett, H. Hildebrandt, R. Wong, P. Nugent, P. Mysliwiec, and W. Schindler, 

“Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults”, New England Journal of 
Medicine; 349: 2191-2200, 2003. 

[4] Z. Liang, F. Yang, M. Wax, J. Li, J. You, A. Kaufman, L. Hong, H. Li, and A. Viswambharan, “Inclusion of a priori information 
in segmentation of colon lumen for 3D virtual colonoscopy”, Conference Record of IEEE Nuclear Science Society and Medical 
Imaging Conference: in CD-ROM, 1997. 

[5] D. Chen, Z. Liang, M. Wax, L. Li, B. Li, and A. Kaufman, “A novel approach to extract colon lumen from CT images for virtual 
colonoscopy”, IEEE Transactions on Medical Imaging; 19: 1220-1226, 2000. 

[6] L. Li, D. Chen, S. Lakare, K. Kreeger, I. Bitter, A. Kaufman, M. Wax, P. Djuric, and Z. Liang, “An image segmentation 
approach to extract colon lumen through colonic material tagging and hidden Markov random field model for virtual 
colonoscopy”, SPIE Medical Imaging, 4683: 406-411, 2002. 

[7] Z. Wang, Z. Liang, L. Li, X. Li, B. Li, J. Anderson, and D. Harrington, “Reduction of false positives by internal features for 
polyp detection in CT-based virtual colonoscopy”, Medical Physics, 32: 3602-3616, 2005. 

[8] Z. Liang, Z. Wang, B. Li, and H. Lu, “Improved electronic colon cleansing with less-stressful bowel preparation for computer-
aided detection of polyps in CT colonography”, The 91st Annual Meeting of the Radiological Society of North America (RSNA), 
pp.440, 2005. 

[9] Z. Wang, Z. Liang, X. Li, L. Li, B. Li, D. Eremina, and H. Lu, “An improved electronic colon cleansing method for detection of 
colonic polyps by virtual colonoscopy”, IEEE Transactions on Biomedical Engineering; 53: 1635-1646, 2006. 

[10] H. Choi, D. Haynor, and Y. Kim, “Partial volume tissue classification of multichannel magnetic resonance images – a mixel 
model”, IEEE Transactions on Medical Imaging; 10: 395-407, 1991. 

[11] P. Santago and H. D. Gage, “Statistical models of partial volume effect”, IEEE Transactions on Image Processing; 4: 1531-1539, 
1995. 

[12] K. Leemput, F. Maes, D. Vandermeulen, and P. Suetens, “A unifying framework for partial volume segmentation of brain MR 
images”, IEEE Transactions on Medical Imaging; 22: 105-119, 2003. 

[13] Z. Liang, X. Li, D. Eremina, and L. Li, “An EM framework for segmentation of tissue mixtures from medical images”, 
Proceeding of the International Conference of IEEE Engineering in Medicine and Biology, pp. 682-685, Cancun, Mexico, 2003. 

[14] D. Eremina, X. Li, W. Zhu, J. Wang, and Z. Liang, “Investigation on an EM framework for partial volume image segmentation”, 
SPIE Medical Imaging, 6144: D1-D9, 2006. 

[15] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm”, J. R. Stat. Soc., 39(B): 
1-38, 1977. 

[16] Z. Liang, R. Jaszczak, and E. Coleman, “Parameter estimation of finite mixtures using the EM algorithm and information criteria 
with application to medical image processing”, IEEE Transactions on Nuclear Science, 39: 1126-1133, 1992 

 

Proc. of SPIE Vol. 6511  65110V-10


	SPIE Proceedings
	MAIN MENU
	Conferences
	Search
	Close


